Journal of Computational Physi&é$§4,468-496 (1999)

®
Article ID jeph.1999.6323, available online at http://www.idealibrary.conl DE &l.

Modeling Melt Convection in Phase-Field
Simulations of Solidification

C. Beckermanrf, H.-J. Diepers;, |. Steinbachi, A. Karmaj and X. Tond

*Department of Mechanical Engineering, University of lowa, lowa City, lowa 52242-1527;
tACCESS e.V., IntzestralRe 5, 52072 Aachen, Gernf@gpartment of Physics,
Northeastern University, Boston, Massachusetts 02115
E-mail: becker@icaen.uiowa.edu

Received November 24, 1998; revised April 22, 1999

A novel diffuse interface model is presented for the direct numerical simulation
of microstructure evolution in solidification processes involving convection in the
liquid phase. The solidification front is treated as a moving interface in the diffuse
approximation as known from phase-field theories. The no-slip condition between
the melt and the solid is realized via a drag resistivity in the diffuse interface region.
The model is shown to accurately reproduce the usual sharp interface conditions
in the limit of a thin diffuse interface region. A first test of the model is provided
for flow through regular arrays of cylinders with a stationary interface. Then, two
examples are presented that involve solid/liquid phase-change: (i) coarsening of a
mush of a binary alloy, where both the interface curvature and the flow permeability
evolve with time, and (ii) dendritic growth in the presence of melt convection with
particular emphasis on the operating point of the tipy 1999 Academic Press
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1. INTRODUCTION

The formation of morphological features in solidification of pure materials and alloys |
been investigated over many years and the literature abounds in references on subje
diverse as stability of a planar solid/liquid interface [1], dendritic growth [2], and coarsen
of a solid/liquid mixture [3, 4]. The selection of solidification patterns is controlled by t
interplay of thermal, solutal, capillary, and kinetic length or time scales [5]. Comparably lif
is known about the influence of natural or forced convection on microstructure developrr
Melt convection adds new length and time scales to the problem and results in morpholc
that are potentially much different from those generated by purely diffusive heat and sc
transport. Moreover, not only does convection influence the solidification pattern, but
evolving microstructure can also trigger unexpected and complicated flow phenom
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Examples are the coupled convective and morphological instabilities at a growth f
investigated in detail by Corie#t al. [6] and Davis [7]. Other theoretical investigations
involving convective effects are often of a preliminary nature, decoupling the flow from |
interface evolution or applying only to limited parametric regions [8, 9]. The objective
the present study is to develop a numerical method that can be used to study nonlinee
fully coupled solidification and convection problems on a microscopic scale (first presel
in [10]). The emphasis in this paper is not on describing intricate numerical procedu
but on deriving governing equations that can be easily implemented in standard code
coupled transport phenomena.

The phase-field method has recently emerged as a viable computational tool for s
lating the formation of complex interfacial patterns in solidification [11-13]. An overvie
of the origins of this method in the context of continuum models of phase transitions
be found in Karma and Rappel [14]. Udaykumar and Shyy [15] and Juric and Tryggva
[16] provide a detailed discussion of the relative merits of this method and other nur
ical techniques developed for solving problems with free interfaces that have a com
topology. The phase-field method belongs to a larger class of methods that rely on tre
a microscopically sharp interface as a diffuse region immersed in the calculation domn
A variable ¢, called the phase-field variable in the context of the phase-field methoc
introduced that varies smoothly from zero to unity between the two phases over the dif
interface region, which has a small but numerically resolvable thickness. This variable
serves to distribute the interfacial forces and other sources over the diffuse region.

The phase-field method derives its attractiveness from the fact that explicit tracking o
interface and explicitly satisfying interfacial boundary conditions is completely avoid
Other diffuse interface methods, such as the level set method [17], still require the acci
computation of interface normals and curvatures. This is accomplished in the phase-
method by solving a certain evolution equation for the phase-field variable. This evolu
equation can be rigorously derived from thermodynamically consistent theories of cor
uum phase transitions (see, for example, Ref. [18]). In order to establish a clearer conne
with other diffuse interface methods, we present in this paper a simpler though less ge
derivation starting from the classical velocity-dependent Gibbs—Thomson interface co
tion, which includes the effect of surface tension and the attachment kinetics of atoms ¢
interface. A key feature of the phase-field evolution equation is that it contains an exp
anti-diffusivity that maintains thin and well-defined interface regions without introduci
oscillations or violating conservation of mass [19].

The phase-field method, as well as other techniques that rely on a diffuse interface
be shown to reduce to the standard sharp-interface formulation in the limit of vanist
interface thickness [1]. In actual computations, it is critical to understand how the qualit
the solution deteriorates with increasing interface thickness, because the grid spacing |
to be of the order of or smaller than the interface thickness. In the context of phase-
methods applied to solidification, Wheeler al. [12] and Wanget al. [18] have shown
that the interface thickness must be smaller than the capillary length for the solutio
converge to the sharp-interface limit. Karma and Rappel [14] reexamined this issue
derived coefficients for the so-called thin-interface limit of the phase-field equation, wh
the interface thickness only needs to be small compared to the “mesoscale” of the
and/or solute diffusion field, and the classical interface conditions are satisfied for a fi
thickness. Their analysis allowed for the first time fully resolved computations to be m
for three-dimensional dendrites with arbitrary interface kinetics [20]. In our derivation
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the model equations for the case of melt convection, we also use a thin-interface appr
and show that the interface thickness only needs to be small compared to the mesosc
the flow field.

Application of the phase-field and other diffuse interface methods to solidification |
been limited to problems where the transport of heat and/or solute is by diffusion o
Jacgmin [19] recently presented an application of the phase-field method to two-pl
Navier—Stokes flows driven by surface tension at the interface between two fluids. In
ticular, a more complete version of the continuum surface tension method of Bracl
et al. [21] was shown to result from the phase-field model. In this and other immer:
interface techniques for two-fluid flows, not only are the interfacial forces modeled as ¢
tinuum forces distributed over the diffuse interface region, but other fluid properties,
example, the density and viscosity, are also smeared over the interface region by va
them smoothly from their values in one fluid to the ones in the other fluid. In the pres
application to solidification with melt convection, we assume the solid phase to be rigid
stationary and surface tension driven flows are not considered. We introduce a distrik
dissipative interfacial drag term in the Navier—Stokes equation that provides a consi:
and accurate way of modeling the usual no-slip condition at a microscopically sharf
terface. Our method can be used with any diffuse interface technique, but we prese
application only in the context of the phase-field method. It is important to note that
present method does not rely on specifying a variable viscosity across the diffuse intel
region that tends to a large value in the rigid solid. While such an approach may be p
ically realistic for certain classes of materials, the variation would be difficult to spec
for a rigid solid. In addition, our method addresses in a physically realistic way the tra
port of mass, momentum, heat, and solute by the "residual” flow in the diffuse interf:
region by including phase-field variable dependent advection terms in the conserve
equations.

The diffuse interface versions of the mass, momentum, species, and energy consen
equations are derived next, which is followed by a geometrical derivation of the evolut
equation for the phase-field varialgleThe modelis first applied to one-dimensional Couett
and Poiseuille flows with a stationary diffuse interface, as well as to flow around a m
complicated “microstructure” consisting of regular arrays of cylinders. These test ce
allow for a comparison with analytical solutions and an examination of the accuracy
the solution for increasing thickness of the diffuse interface. Then, two examples involv
solidification with melt convection are presented. The first example is concerned \
adiabatic coarsening of an isothermal solid/liquid mixture of a binary alloy with melt flo
finite-rate diffusion of solute in the solid phase, and convection of solute in the liquid phe
Both, the effects of convection on coarsening and the profound influence of coarse
on the flow, are demonstrated. The second example deals with the effect of convectic
dendritic growth of a pure substance in a supercooled melt. The effect of the flow on
dendrite tip speed and curvature is investigated in some detail.

2. CONSERVATION EQUATIONS FOR A DIFFUSE INTERFACE

The conservation equations for mass, momentum, energy, and species are deriv
treating the microscopically sharp solid/liquid interface as a diffuse region where the s
and liquid phases coexist. The phase-field variap|evaries smoothly from zero in the
bulk liquid to unity in the solid and can be viewed as a volume fraction solid. Conservat
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FIG.1. Schematic illustration of the diffuse solid—liquid interface, the averaging volume, and the phase-f
variable variation normal to the interface.

equations are needed that are valid not only in the solid and liquid phases, but also i
diffuse interface region. Our basic strategy in deriving such equations is to use the ¢
kind of volume or ensemble averaging methods that have been used to derive consen
equations for other multiphase systems [22—-24]. In solid/liquid phase change with a
croscopically sharp interface, a diffuse interface region physically exists only on an atc
scale and can be associated with a density profile [25]. As shown in Fig. 1, the atomic-s
solid fraction is therefore defined for a representative elementary voligirtbat is larger
than the length scale associated with the atomic structures and much smaller than the @
interface region. It should not be confused with the solid fraction used in description:
mushy zones existing on a macroscopic [O()] scale.

The present approach results in physically meaningful model equations that are co
tent not only with the phase-field but any diffuse interface method. Volume or ensen
averaging allows for a rigorous derivation of the conservation equations for multi-ph
mixtures (i.e., for the diffuse interface) from the basic continuum equations for sing
phase substances. One result of the averaging is that the surface forces and other sot
microscopically sharp interfaces are represented as volume forces and sources that a
tributed over the diffuse interface region. Furthermore, the averaged conservation equz
explicitly contain the phase-field variable and reduce to the correct forms in the limit ¢
sharp interface. The phase-field variablés formally related to the volume or ensemble
average of an existence functiaxs , which is unity in the solid and zero otherwise [23],
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via
=¢s=1 = 1/de—<x> (1)
¢ - ¢s = ¢I = AV s = s/s
AV

where the symbol$ ) denote an average over the volum¥, which is macroscopically
small. The average interfacial areaA;, between the solid and liquid per unit volume is
given by

AA
— ={|VX4|) = |V 2
AV (IVXs]) = [V (2)
and the average unit normal vector exterior to the soljand curvaturey, of the micro-
scopic solid/liquid interface are defined by

VXs Vo
= — = ——— 3
" < |vxs|> Vel @)
and
sz.nz_i[vz(z,_W} )
Vol Vol

A general advection-diffusion equation, valid at a point within a ptkagar any conserved
quantityw can be expressed as

%(pw)+v-(pV\If)+V-j=0, (5)

where p, v, andj are the density, velocity, and diffusive flux, respectively. Volumetri
sources are not considered. Averaging this equation A¥ewields the following general
conservation equation for phakén a multi-phase system [23]

%(kaqf) + V- (X)) + V- (Xij) — ([p¥ (V= Vi) +]]*- VX)) =0, (6)
wherev; - VX =—09dX/dt defines the velocity; of the interface. In the absence of
interfacial sources (e.g., surface tension), the sum of the advective and diffusive flt
across the interface, given by the last term in Eq. (6), must be equal on both sides o
interface.

In the following, we provide the averaged mass, momentum, energy, and species co
vation equations for a simple binary alloy undergoing solid/liquid phase-change. Som
the details of the derivations can be found in Refs. [23, 24]. In order to keep the equat
simple, the densities of the liquid and solid phases are assumed equal and constan
ps = p = p = const. The intrinsic or phase average of a variablis defined by

Wi = (XkW) /o )
and average mixture quantities by

U= (XW) =) d. (8)

k=s,I k=s,I
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The overbar is omitted in the following. Furthermore, all dispersive fluxes, arising fr
averages of theWw product, and tortuosities in the diffusive fluxes are neglected as a f
approximation. The solid is assumed to be stationary and rigid,vie=,0, such that a
momentum equation for the solid phase is not needed.

Mass

The mixture continuity equation is obtained by summing the averaged solid and lic
continuity equations, which can be obtained by setting 1 andj =0 in Eq. (6). Then,

V- [1-¢w] =0, ©)

wherev, is the averaged intrinsic liquid velocity atl — ¢) = ¢

Momentum

The averaged liquigk =1) momentum equation can be derived from Eq. (6) by settir
W =vand—j = —PIl 4+ 7, whereP is the pressurd,is the unit tensor (i.e., identity matrix
8,; in Cartesian coordinates), amds the viscous stress tensor. Hence,

d
ﬁ[(l —P)ov]l+ V- [1=p)pvivi]

=-V[1-@)Rl+ V- [L-®)7]+ ([pv(v—v) + Pl —7]' - VX). (10)

The interfacial momentum source term, i.e., the last term in Eq. (10), can be simplifiec
realizing that (v — v;)]' - VX, =0 for equal densities of the phases ane=0. Further-
more, by defining an average interfacial pressure of the licgid,as [23]

PiVe =RVl —¢) = ([PI]'"-VX/) (11)

and assuming that compressibility effects are negligible such that microscopic pres
equilibrium exists, i.e.R ; = R, the pressure contribution to the interfacial momentur
source can be combined with the average pressure gradient term, i.e., the first term c
right-hand side of Eq. (10), to give(1 — ¢)VR. Finally, the average viscous stress terr
i.e., the second term on the right-hand side of Eq. (10), can be modeled for an incompres
Newtonian liquid with constant viscosity,, a stationary solid and equal phase densitie
as [24]

V- [(Q1=-)7m]=V-(uV[L-v]). (12)

This model is in accordance with the usual theories of flow through porous media [22-
where the average viscous stress is taken to be proportional to the gradient of the supe
liquid velocity, (1 — ¢)v;. Now, Eq. (10) can be rewritten as

9

a[(l —P)ov] +V - [A - @)pvivi]

=—1-¢)VR+V - (wV[A-pm] — {[1]'- VX). (13)
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The last term on the right hand side of Eq. (10) accounts for the dissipative viscous s
in the liquid due to interactions with the solid in the diffuse interface region. This term
of key importance to the present study and is modeled in a subsequent section. Note t
the liquid (@ = 0), Eq. (13) reduces to the usual single-phase Navier—Stokes equation f
Newtonian fluid with constant density and viscosity.

Energy

By summing up the averaged energy conservation equations for the solid and i
phases and assuming that the heat flux is given by Fourier’s law, we obtain the follov
mixture energy equation

0
ﬁ(ph) + V- [A=¢)pvih] =V - [pAsVTs + (1 = $)M VT, (14)

whereh denotes the mixture enthalgy= ¢hs + (1 — ¢)h;. Assuming equal and constant
specific heats, i.eq = ¢s = cp, and equal thermal conductivities, i.&.= As = 1, defining
the latent heat of fusion % — hs = L, and assuming locally equal phase temperatures, i.
T =Ts=T, we obtain

aT L 9¢

PR . — — 2 -
ot + V- [(A=dpT] =aVT+ co ot (15)

wherea = A/(pCp) is the thermal diffusivity.

Species

Again, summing up the averaged species equations for the solid and liquid phase:
assuming that the diffusive species flux is given by Fick’s law, the following mixture spec
equation is obtained [24, 26]

a
a[¢Cs +A=¢)Cl1+ V- [A=p)vC] =V [pDsVCs + (1 - ¢)DVC], (16)

whereCy andDy are the species concentration and binary mass diffusivity, respectively,
each phase. Before Eq. (16) can be solved, a relationship between the species concent
inthe solid Cs , and liquid,C, , needs to be found. Assuming local equilibrium on the atom
scale (as with the temperatures), a binary partition coefficient can be defined as

k=—.
C

17)
Defining an average mixture concentratiGnaccording to Eq. (8), the phase concentration
can be expressed as

kC C

Cs == m and C|

(18)

and Eq. (16) can be rewritten as

aC

1—¢ _ - 1-kC
EJFV.(W )_V-D[VC+7V¢, (19)

+k¢>vIC 1-¢+ke
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where

1-¢

D= Ds + (D) — Ds)m~

(20)

Equation (19) can be solved for the mixture concentration. Then, the solid and liquid
centrations are obtained from Eq. (18). The present mixture species conservation eqt
has a clear physical interpretation. The prefactor before the velocity in Eq. (19) imp
that only the liquid species are advected with the superficial liquid veldgity,¢)v,. The
effective diffusion coefficientD, can be viewed as a mixture diffusivity. The last term it
Eq. (19) is a diffusive flux that is proportional to the segregation amg@@{% =C —GCs
and is in the direction of the average interface normal (i.e., across the interface).

It is interesting to make contact with existing models of alloy solidification [12, 27, 2¢
as well as the basic thermodynamics of dilute alloys, by noting that Eq. (19) can be rewr
(for simplicity without flow) in a variational form

aC SF
—~ V. vV—
=9 (wvig) (21)

similar to the Cahn—Hillard equation [29]. In this contedt,= DC, can be interpreted as
an atomic mobility, and the function

F(¢,C)=Cln[ ]—c+<1>(¢,v¢,...) (22)

C
1—¢+k
as the bulk free-energy of the system, wh@i@, V¢, ...) is an arbitrary function ap and
its higher gradients that does not appear in Eq. (19) after taking the functional derivativ
Eqg. (21). Consequently, the chemical potentiek: 9 F/9C =In[C/(1— ¢ + k)], equals
InC, in the liquid phasd¢ = 0) and InCs in the solid phaséy = 1), which are precisely
the standard entropic contributions derived from first principles of thermodynamics [:
Therefore, it is interesting that although Eg. (19) is derived from an averaging methoc
opposed to variationally, it can be given a proper thermodynamic interpretation. Howe
one difference between the present model and other phase-field models of alloy solidific
[12, 27, 28] is that we shall not require the equations#and C to be derivable from
a single free-energy functional. For example, we shall not require that the equatio
motion for ¢, described in the next section, be of the fapm- —§F /8¢, whereF is the
free-energy defined by Eq. (22). Relaxing this gradient flow constraint on the equat
generally provides more flexibility in the choice of the phase-field model, and even sc
computational advantages [20]. We stick here to the point of view that the phase-
equations are only quantitatively meaningful in the sharp-interface limit where they cau
ultimately related to experiment.

3. PHASE-FIELD EQUATION

We present a simple geometrically motivated derivation of the phase-field equation s
ing from the phenomenological Gibbs—Thomson interface relation. The derivation is
intended to clarify the connection between the phase-field method and other imme
interface techniques that utilize a diffuse interface.
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The Gibbs—Thomson equation for an isotropic surface energy and a simple binary ¢
can be written as

Un

Ik

T T+mC - I, (23)

wherev,, is the normal interface spead is a linear kinetic coefficient,, is the equilibrium
melting temperature of the pure substanog,is the slope of the liquidus line from an
equilibrium phase diagram, amtis the Gibbs—Thomson coefficient. The normal interfac
speed is given by

Un=Vi'n=Vi'(—E>=M. (24)
Vol Vol

Substituting Eq. (24) and the expression for the curvatyrgiven by Eq. (4), into Eq. (23)
yields

d¢

i) (VoV)|V9|
at

Vol

Equation (25) does not have a unique solution for a stationary front profilg.f&uch

a profile has to be specified separately and corresponds to the choice of a kernel. U
in other diffuse interface methods, the profile is physically motivated in the phase-fi
method. The most commonly used profile results from the choice of a double-well poter
for the Gibbs free energy in the derivation of the phase-field equation [12, 13]. The prc
is given by

= vn|Ve| = I {quﬁ— }‘FMk(Tm—T +mC)|Ve|. (25)

1 n
=—-(1-tanh— |, 26
b 2( 25) (26)
wheren is the coordinate normal to the interface adddihe interface thickness over which
¢ varies from 0.05 to 0.95. With Eq. (26), the average interfacial area per unit volum
given by

0 ¢(l—9)
Vol = T — (27)
and the second term in the expression for the curvature, Eq. (4), becomes
2 — —
(VeV)IVP| _ 9% _ ¢(1—§)(1—2¢) 28)

IV¢|  oan2 82
Substituting Egs. (27) and (28) into Eq. (25) results in the present phase-field-like eque

¢ 2
— = u |V —
ar = Mk (0]

1-¢)(1-2 1-
! ¢§2( ?) +Mk(-|'m—'|'-i-m|C|)L 3 ?) (29)

which has for a stationary profile Eq. (26) in equilibrium= T, +m C,. The last term
in Eg. (29) represents the thermo-solutal driving forcedomhile the first term on the
right-hand side represents surface tension and is an anti-diffusivity that maintains a thir
well-defined interface.
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In a non-stationary growth situation, the instantaneous profieadéng the local normal
direction will only differ slightly from the stationary profile defined by Eqg. (26) i§ small,
such that in the limits — 0, the phase-field equation faithfully reproduces the interfa
condition Eq. (23). Using a reformulated asymptotic analysis of the phase-field mc
of a pure melt(Cs = C, =0), Karma and Rappel [20] have recently shown that there a
corrections to this interface condition wheéiis small compared to the macro scale of th
diffusion field, but finite, which is the typical case in computations. If one applies the res
of their analysis to the phase-field equation, Eq. (29), coupled to the transport equa
Eqg. (15), and converts the result to the present notation, one obtains the standard inte
condition,vn/uﬁﬁz T — T, where

1 1 8 ul
L1,

- } (C =0). (30)
Mk

Mﬁﬁ is an effective kinetic coefficient andl=5/6. Note that the finité correction to the
interface condition originates from the variation of the temperature field in the interf:
region. For this reason, bothandL /c, appear in the expression f;mﬁﬁ. One nice fea-
ture of this result is that one can choose the dimensionless combination of param
AduklL /ac, =1 and reproduce the condition of local equilibrium at the interface (i.e., i
stantaneous attachment kinetics), which is experimentally relevant at low growth rat
should be emphasized that Eq. (30) is only valid for pure melts. For the case of isothe
alloy solidification, i.e., Eq. (29) coupled to the transport Eq. (19) with uniférran anal-
ysis similar to that of Ref. [20] leads to the conclusion that the fifiiberrections to the
interface condition do not simply lead to a renormalization of the kinetic coefficient [3
There is generally a discontinuity of chemical potential at the interface and the correct
to the interface concentration on the two sides of the interface are proportional to the no
gradient of solute at the interface [31]. For the study of isothermal coarsening present:
Section 7, these corrections appear to have a small effect on the dynamics since we re
scaling laws that agree with sharp interface theories. This is consistent with the fact
these additional corrections to the interface condition (discontinuity of chemical poter
and gradient corrections) are proportional to the interface velocity. This velocity is gener
small during coarsening, except during the coalescence or disappearance of particl
contrast, during dendritic growth, small kinetic variations of temperature along the interf
can profoundly influence the selection of the operating state [32]. Therefore, in this ca:
is important to include such corrections.

4. MODELING OF THE INTERFACIAL STRESS TERM

Central to the present method is the modeling of the dissipative interfacial stress t
M¢, in the momentum equation for the liquid, Eq. (13), i{r]]' - VX;). Noting the delta-
function like properties of th& Xy operator, this term can be rewritten as

Ml = ([7]' - VX)) =71 - V¢ = —71i - Vo = 71, - N|V§|, (31)

wherer j isthe average viscous stress tensor at the interface. The viscous stress is ger
proportional to the liquid viscosity and a velocity gradient. As a first approximation, anc
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analogy with the friction term used for slow flow in porous media [24], we can write
d M
MP' = huo =1V, (32)

whereh is a dimensionless constant. In Eqg. (32), we have assumed thaties linearly
across the diffuse interface of thicknessThe inclusion of the phase-field variabig, is
strictly not necessary, but corresponds physically to an increasing interfacial stress
“solid fraction.” The constanh is similar to a dimensionless friction coefficient and it:
value is determined analytically in the next section. Substituting Eq. (27) for the interfa
area per unit volumeyv¢/|, the final expression suitable for computations is obtained as
h¢?(1 - ¢)
wm—m0V

d

(33)
The drag term vanishes in the single-phase liggie= 0). In the limit of a sharp interface,
3 — 0, the prefactor in Eq. (33) becomes infinitely large, thus reproducing the usual no-
condition (v; = 0) at the solid/liquid interface. For a diffuse interface region of small bt
finite thickness, as is the case here, the above friction term acts as a distributed mome
sink that gradually forces the liquid velocity to zerodas> 1.

5. ASYMPTOTICS FOR PLANE FLOW PAST A STATIONARY
SOLID-LIQUID INTERFACE

The properties of the present model for the dissipative interfacial stress can be e
ined in detail for a simple flow which can be described analytically. Such a basic flov
plane Poiseuille flow past a stationary solid—liquid interface. By performing an asympt
analysis, matching the inner solution in the diffuse interface region with the correct ot
velocity profile corresponding to a sharp interface (i.e., with a no-slip conditigr-=£2.5),
the dimensionless constamin Eq. (33) is determined.

Consider Poiseuille flow between two parallel plates oriented along the y-axis and \
the plates located at=0 andx = 2L (Fig. 2). The solid-liquid interface is assumed to b
stationary and is represented by the lower platex at0). In the case of a sharp interface,
the momentum equation is

d2v| dP
—=—=—uF 34
Mae =gy~ MF (34)
wherey, is the y-component of the liquid velocity,P/dy is the applied pressure gradient,
and F is a short-hand notation for the pressure drop per unit length and viscosity. -
solution of Eq. (34), applying no-slip conditions at the plates, is

v = XFL[1—x/(2L)]. (35)

For the diffuse interface case, the corresponding momentum equation is obtained
Eqg. (10) as

d?(1— @)u P*(1—¢)
wi —huw

dP
dx2 52 v =(1- ¢)d7y' (36)
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FIG. 2. Schematic illustration of the velocity profiles for Poiseuille flow with a sharp and a diffuse interfa
representing the lower boundary.

Introducing the inner variablX = x/§ and the mixture velocity = (1 — ¢)v;, and using
the same definition of as above, yields

d?v 2 2
We will first consider the limit of smalb, where the right-hand side of Eq. (37) can b
neglected such that

d%v
5 h¢?v = 0. (38)

This limit corresponds to a linear velocity profile in the region outside the diffuse interf
(Couette flow). We now seek to match the inner solution of Eq. (38) to the outer solut
defined by Eq. (35) in the liquid, and zero velocity in the solid. Therefore, the match
conditions are

V(X = —00) =0 (39)
and
v=(FL§X forl« X <« L/S. (40)

Let us now consider the analytic asymptotic behaviov ©f) for | X| > 1. For a general
value ofh we have

v(X) = AexpwvhX)  forX <0 (41)
v(X) = Aa(h)[X = Xi(h)]  for X > 0, (42)
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whereA is a constant and(h) and X; (h) are functions oh only. Since Eq. (42) is linear,
A can be chosen such that

A= FL8/a(h). (43)

However, X; (h), which is the effective interface position where the flow velocity vanishe
is only zero for a special value bf= h* that needs to be determined. Hence, the matchit
condition given by Eq. (40) can only be satisfieif(h*) = 0. By solving Eq. (35) with a
fourth-order Runge—Kutta ODE solver, the valuéndfvas determined to be

h* = 2.757. (44)

The important property dfi* is that it does not depend on the imposed pressure gradi
and flow field in the outer region. The present result holds for more general flows bec:
in the limit of smalls there is always a linear velocity gradient normal to the interface.
addition, an extension of the analysis of Karma and Rappel [20] to the present model |
to the result that the tangential flow inside the thin interface region does not modify
velocity-dependent Gibbs—Thomson conditimy,uﬁﬁz Tm — T — 'k, and the expression
for the effective kinetic coefficient Eq. (30), which remains applicable with flow.

For the case of a linear velocity profile (Couette flow), the behavior of the soluti
for different values ot and different interface thicknesséss shown in Fig. 3. It can
be seen that foh > 2.757, the velocity profile for the diffuse interface does not matc
the “exact” linear profile for a sharp interface but is significantly shifted. On the otf
hand, forh=2.757, there is a perfect match regardless of the diffuse interface thickne
This independence df on the interface thickness is the main advantage of the pres
method.

1.2

¢(x) for thin interface
¢(x) for thick interface

0.8 -

0.6 -

0.4

phase-field¢ and velocity

02 | v(x) for thin interface

v(x) for thick interface

10 12 14 16 18 20 22 24

x-coordinate in dimensions of the numerical grid

FIG.3. Computed velocity profiles for Couette flow past a stationary solid—liquid interface; results are she
for two different interface thicknesses and the dimensionless interface friction coeffieieh757, as well as for
a thin interface with > 2.757.
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While the independence &f on the interface thicknesksis true for an infinite liquid

region (i.e.8/L — 0), itis useful to examine how* changes with finité/L. Let us define
the small parameter

e=348/L (45)
and a dimensionless velocity
- v
V= Fls (46)
Then, Eq. (37) becomes
d?s -

We are now looking for a solution of the above equation for sm#iat matches the exact
Poiseuille flow

7= X(1—-¢eX/2) for | X > 1| (48)
and decays to zero in the solid
(X - —o0) =0. (49)

There is again a unique valuelof= h*(¢) for which this is possible, but which now depend:
one. A plot of h*(¢) is shown in Fig. 4. Fog increasing to 0.1h* decreases by only about
5%. Such small changes it have a negligible effect on the computed velocity profil
outside the diffuse interface region. Figure 5 shows computed velocity profiles for diffel
¢ =43/L for Poiseuille flow. Already fop < 0.2, and certainly in the pure liquid region, the
diffuse interface profiles match the exact profile for a sharp interfage-e0.5 extremely

2.80

2.70

Constant h

2.60

2.50 L - L
0.00 0.05 0.10 0.15

e=6/L

FIG. 4. Dependence of the dimensionless interface friction coeffiti@ntthe ratio of the interface thickness
to the half-width of the flow passage,in Poiseuille flow.
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12}
o (x) for thin, medium
and thick interface

08| R

06 1

phase-field ¢ and velocity

04r ‘ g

() for thin, medium |}

0-2 1" and thick interface

Poiseuille profile (sharp interface)

0 10 20 30 40 50
x-coordinate in dimensions of the numerical grid

FIG.5. Computed velocity profiles for Poiseuille flow in a channel where the lower boundary is a station
solid-liquid interface (see Fig. 2); results are shown for three different interface thicknesses.

well. For a general flow, one should use the constexd =0) and decrease until the
dependence onbecomes negligible.

6. VALIDATION FOR TWO-DIMENSIONAL FLOW

A stringent test problem for the performance of the present diffuse interface mode
given by Stokes flow through regular arrays of infinite cylinders as shown in Fig. 6. Unit ct
containing both square and triangular arrangements are considered. The flow is pet
in the horizontal direction, forced by an external pressure gradient, and symmetric a
top and bottom boundaries. Analytical expressions for the drag force on the cylinders
function of the solid fractionfs, in the unit cell have been obtained by Sangani and Acrivc
[33] and Drummond and Tahir [34]. This test problem thus allows for a close examinat
of the ability of the present method to give the correct forces on a body, in particular for f
past a curved interface. In addition, the results for larger solid fractions, when the cylin
almost touch each other, provide a test for cases where the ratio of the interface thick
to the width of the flow passage (i.e),is not small.

The two-dimensional momentum and continuity equations were solved numerically u:
astandard control-volume, implicit discretization scheme [35]. The distribution of the phe
field variable¢ was set before a computational run using a radially symmetric tang
hyperbolic profile to affect the smearing of the (stationary) solid/liquid interface. Tt
is illustrated by the variation of gray tones in Fig. 6. A square grid ok%IL control-
volumes was utilized in the simulations for the square array, and4Rfor the triangular
array. The interface thickness corresponded to about five control-volumes. The nume
results, together with the analytical predictions, are plotted in Figs. 7a and 7b. The n
liquid velocity through the unit cell is normalized by the pressure drop per unit wic
(drag force) and A, . It can be seen that the numerical results are generally in excell
agreement with the exact Stokes flow solutions. Minor deviations are present for s|
solid fractions, which can be attributed to the relatively coarse numerical grid used. Fol
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FIG.6. Unit-cells and sample computed velocities for the simulation of flow through regular arrays of infir
cylinders; the flow is periodic in the east-west direction and the diffuse solid-liquid interface is reflected by
gray levels: (a) square array; (b) triangular array.

smallest volume fraction, the diameter of the cylinders (measurge:dl.5) contains only

six grid cells, implying that the diffuse interface thickness is of the same magnitude as
cylinder diameter. Nonetheless, remarkably accurate results are obtained. For the s
array (Fig. 7a), large differences in the predictions occur for solid fractions greater t
about 0.5. This can be attributed to the fact that the analytical solutions break down in
regime. The present numerical method correctly predicts the mean velocity approac
zero when the packing fraction is reached. No such disagreement exists for the trian
array (Fig. 7b). The computational results at high solid fractions, when the diffuse interfe
from neighboring cylinders almost overlap, show that the present model has exce
convergence properties for large interface thickness to flow passage width ratias.(i.e
Our preliminary tests indicate that other methods, including the popular smeared visc
approach (see Introduction), are unlikely to produce results of similar accuracy fotlarg

7. EXAMPLE 1: SIMULATION OF CONVECTION AND COARSENING
IN AN ISOTHERMAL MUSH OF A BINARY ALLOY

As afirst application involving solid/liquid phase-change, the capillary-driven coarsen
of and flow through a mush of an Al-4 wt.% Cu alloy is simulated. The two-dimensior
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FIG. 7. Comparison of the computed normalized mean velocities through regular arrays of cylinders
Fig. 6) as a function of the volume fraction of cylinders with the analytical results of Sangani and Acrivos |
and Drummond and Tahir [34]: (a) square array; (b) triangular array.

system consists of a random array of cylinders, which can be interpreted as a cross se
through an array of dendrites. The initial size distribution of the cylinders is set accordin
the coarsening theory of Marqusee [36]. Periodic and/or symmetric conditions are apj
at the boundaries of the square domain of size 0.82.nTine system is assumed to be
isothermal, such that its temperature can be evaluated from the conservation law

pCpT = Lfs. (50)
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TABLE |
Thermophysical Properties Used in the Al-4%Cu
Coarsening Simulations [10]

Property Value
T 933.6K
m 2.6 K/%
r 2.41x 107" mK
D, 3x10°m?/s
Ds 3x 108 m?/s
K 0.14
pL 9.5x 10° J/n?
PCh 2.58x 10f J/Kn?
p 2.475x 10° kg/n?®
" 0.014 Poise
66 1.27x10°m
Ik 2.6 x 10" m/sk

Note For practical reasons the value dfvas chosen to
be approximately equal to the length of one grid cell—the
actual interface thicknessj®t, is of the order of 16° m; the
actual kinetic coefficient2®, is approximately 0.33 m/sK.
The value in the table was obtained by multiplyingf* by
the ratiosa°t /5.

The initial mean solid fractionfs, for all simulations reported here is 20.7%. The initia
concentration distribution in each cylinder and the melt is set according to the Scheil e
tion. All material data are summarized in Table I. The simulations are performed o
301x 301 grid and for a sufficiently long time to achieve self-similar coarsening behav
Computed results for a simulation case without convection are shown in Figs. 8a—8d.
gray tones indicate the copper concentration, while the thick solid lines show the positic
the solid/liquid interfaced = 0.5). It can be seen that the different curvature supercoolin
of the various size cylinders cause concentration gradients to develop in the liquid bet
the solid, through which the cylinders exchange species by diffusion. This causes the I
cylinders to grow at the expense of the smaller cylinders, leading to the expected coa
ing behavior. High concentration gradients are notable during coalescence of two cylin
because negative curvatures result in an enhanced interface concentration according
Gibbs—Thomson relation. At later times, a complex concentration distribution develop
the solid, reflecting the time history of the melting and resolidification processes.
Figures 8e—8h show predictions for a case with the same initial conditions as in the
vious case, but with a melt flow through the system from the top to the bottom. The f
is driven by a constant externally imposed pressure drop of 0.2 .Nfhe flow advects
solute in the liquid, leading to a markedly different coarsening behavior. This is illustra
in Fig. 9, which shows a comparison of the evolution of the total interfacial area per
depth,S, between the diffusive and convective cases. In both cases, coarsening lead:
reduction in the interfacial area with time. In the diffusive case, the long-time behavio
described by a coarsening law of the foBn~ t=%/3. The coarsening exponent efl/3
is in perfect agreement with LSW theory [3, 4]. On the other hand, the coarsening expo
in the convective case is1/2, indicating a faster coarsening rate. The exponeny?fid
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e f g h ==794 um/s

FIG.8. Time histories for 2D coarsening simulations of an Al-4% Cu alloy mush with an initial solid fractic
of 20.7% (approximately constant); the black contour lines correspordd=t®.5 and show the position of the
solid—liquid interface; the gray shades indicate the Cu concentrations in the liquid (10 equal intervals between
and 4.871%) and solid (4 equal intervals between 0.682 and 0.6805%): (a) to (d) are purely diffusive condit
(e) to (h) with forced convection in the north—south direction.

in agreement with the analysis of Ratke and Thieringer [37] for coarsening in the prese
of a Stokes flow.

Itcan also be observed from Figs. 8e—8h that the flow velocities are continually increa
with time, although the imposed pressure drop is constant. The increase simply reflect
decrease in fluid friction due to a reduction in the interfacial area. For slow flow throug
porous medium, the mean velocity, can be related to the pressure drag, across the

1.5 T T —

1 .4 | ""w
13t -1/3 I—"-a..,.-1/2
12F

11

0.9+t
08

0.7 purely diffusive -

0.6

A

convective ™

interfacial area / depth [cm]

0400 7100 2100 3100 5100
coarsening time [s]

FIG. 9. Evolution of the total interfacial area per unit depth in the 2D coarsening simulations for pur
diffusive conditions and with melt convection.
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06500 1000 7500 2000 2500 3000 3500 4000 4500 5000
coarsening time [s]

dimensionless permeability

FIG. 10. Evolution of the permeability normalized either by the interfacial area per unit depth or the m
radius in the 2D coarsening simulations with melt convection.

system of length. by Darcy’s law as
wU = KAP/L, (51)

whereK is the permeability. Hence, the increase in the mean velocity implies an incre
in the permeability. The above equation allows for the calculation of the permeabi
from the present simulation results. Figure 10 shows the variation of the permeability \
time. The two curves correspond to the permeability normalized with the interfacial
(K - &%) and with the mean radiugk /R?). Due to this normalization, the permeability is,
as expected, approximately constant with time. The mean radius appears to provide sli
better scaling. The fluctuations in both curves are due to the limited number of cylinc
used in the simulation, which leads to relatively abrupt changes in the mean flow whi
cylinder disappears or when two cylinders coalesce. The fact that the radius norma
permeability is constant implies not only Stokes flow behavior (Uexy R?), but also
confirms the coarsening exponent g1

Overall, the above simulations provide a good illustration of the capabilities of the pre:s
model. Although the results are shown to be realistic, a more detailed analysis and parar
studies are desirable to fully understand the system behavior. This will be presented i
near future.

8. EXAMPLE 2: DENDRITIC GROWTH IN THE PRESENCE OF CONVECTION

The second application of the present model involves equiaxed dendritic growth
pure substance into a uniformly supercooled melt that is flowing around the crystal.
well known that the dendrite tip speed and curvature are extremely sensitive to the vari:
of the surface energy along the crystal/melt interface and the anisotropy introduced b
crystalline structure. Only in the past few years have computational studies been rep
of dendritic growth in the absence of flow that are fully validated against exact numer
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symmetry symmetry

Seed X /

R

FIG. 11. lllustration of the physical system used in the simulation of free dendritic growth of a pure substa
in a supercooled melt with and without melt convection.

solutions, such as microscopic solvability theory [14, 38—40]. Interestingly, most of th
studies utilize the phase-field method. Although other computational methods have |
employed to simulate dendritic growth in the absence of flow (e.g., Refs. [16, 17]), tf
results have not been fully validated. Here, we report on the first calculations of dend
growth in the presence of convection. While we can compare our no-flow results to avail
benchmarks, no analytical solutions or computational results are available for compat
in the flow case. For the computations with convection, we present basic numerical 1
that demonstrate the performance of the method for varying diffuse interface thickness
grid resolution.

The physical system s illustrated in Fig. 11. The domain size is square and a circular
exists initially in the center. The crystal axes are aligned withktyecoordinate axes. The
melt flows from the top to the bottom with a uniform inlet velocity. Symmetry conditions a
applied on the side walls of the domain. The initial velocities are taken to be those for ste
flow around the seed. The inlet and initial melt temperature are the same. No noise
introduced into the calculations, preventing the growth of higher-order dendrite arms [

The phase-field equation employed in this example is the same as in Ref. [20] and t
the form in the present notation

200 _ ooy O (8¢ 9 (99 ¢(l—¢)(L—2¢)
gs 8’[ —Mkr \Y (gsv¢) BX <gsgsay)+8y( S sax> 82

2 2
1-¢)
+5uk(Tm — T) %, (52)
where the terngs =1+ ¢4 cos 4 represents the anisotropy in the surface energy (for
crystal of cubic symmetry and anisotropy strength6 = arctan[o¢/dy)/(d¢/0x)] is the
angle between the interface normal and the crystal axis, and the prime denotes different
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with respect t®. Aside from the inclusion of anisotropy, Eq. (52) is almost identical 1
Eg. (29). One difference is that the last teghil — ¢) in Eq. (29), is replaced by (1— ¢)?

in Eq. (52). The latter form corresponds to a greater concentration of the driving forc
the center of the transition regigp = 0.5) and helps stabilize the front in the presence c
a strong temperature gradient. (The multiplicative factor of 5 is a normalization introdu
such that, withl" and ux appearing explicitly in the phase-field equation, the standa
interface condition is obtained in the lindit—> 0.) In the limit wheres$ is finite, the interface
condition takes the form

Vo d?gs(6)
where
1 _ &0 {1 N “kL] (54)
wee) o Cp

andA = 0.7833. To carry out computations, it is useful to measure length and time in unit
W = /28 andr = 252/, ", respectively, and to define the dimensionless temperature fi
u=(T —Tm)/(L/cp). In this case Eq. (52) can be written in the same form as in Ref. [2!
where only the dimensionless coupling consgaat(5/4)(§/ T') (L /cp) = (5v/2/8)(W/do)
enters in the equation whedg=T'/(L /cp) is the capillary length. Then, the term inside
the square brackets on the RHS of Eq. (54) becomes equal @A/5)(A\W?/aT). In the
present computations, we chode= «/ W? = 4 and choose accordingly= 5/ A = 6.383,
which makes ,mf;‘“(e) vanish in Eq. (54), and yields the ratilg/ W = 0.139. The other
relevant parameters arg = 0.05 (5% anisotropy), and the Prandtl numb@r=231. In
the simulations presented here the initial and inlet melt temperatufeis— 0.55. Results
are shown for inlet velocitie®j, =0 and 1, in units ofV/z.

The flow equations (9) and (10) are solved using the SIMPLER algorithm [35], wt
the phase-field equation and energy equation (12) are solved using an explicit method
The species equation, Eg. (33), is not solved because we are simulating a pure subs
The time step is 0.008 in units ef Due to symmetry, only half of the domair £ 0) is
discretized using a square grid of 28&76 control volumes (unless otherwise noted). Th
spatial step is 0.4 in both theandy directions in units of W. It is shown below that the
present time and spatial steps lead to converged tip velocities and tip radii.

For diffusion controlled growth(Vij, =0), the present simulation recovers the result
of Karma and Rappel [14]. As an example, Fig. 12 shows the phase-field contours
isotherms at three times corresponding te 15, 66, and 96 in units ot. The dendrite
grows symmetrically with the same dimensionless speed, eqi@jte 0.502 in units of
W/, for all four tips. Rescaling the above tip velocity withhit/W?)/(dy/ W), it can be
seen that the present value (0.01744) agrees well with the numerical solution (0.0174
the Green’s function analytical solution (0.017) reported in Refs. [14, 38]. More deta
comparisons and grid and convergence studies for diffusion controlled growth at o
supercoolings and anisotropy strengths (using the same computer code for the phas
equation) can be found in Refs. [14, 20, 38, 43]. We also performed a grid anisotropy
by rotating the principal growth direction of the dendrite by 45 degrees with respect to
grid. For the example corresponding to Fig. 12, the steady state tip velocity at 45 dec
was found to be 4.7% lower than the exact analytical value (0.017). A thorough anal
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FIG.12. Computed phase-field contours (top panels) and isotherms (bottom panels) from the dendritic gr
simulation without convection at= 15, 66, and 96 in units of (from left to right).

of the grid anisotropy effect in phase-field simulations of dendritic growth has recer
been reported by one of the present authors [20]. According to that analysis, the pre
grid introduces an effective anisotropy that is only about 1% of the nominal interfac
anisotropy strength of 0.05.

Figure 13 shows the phase-field contours, velocity vectors, and isotherms for the s
lation with convectionVi, = 1) at the same three times as Fig. 12. For better visualizatic
we have interpolated the velocities onto a grid that is almost 30 times coarser thar
one used in the computations. The temperature field is significantly distorted and indic
much higher temperature gradients near the upper tip, where the flow impinges, than
the lower tip, in the wake of the dendrite. In fact, the isotherms and velocity vectors are
unlike the ones for low Reynolds number convection around an infinite cylinder. Con
guently, the dendrite acquires a highly asymmetric shape, with the upper tip growing fe
than the lower one. Another interesting observation is that the horizontal dendrite arm:
no longer symmetric about the initial dendrite axis and appear to grow slightly upwai
This dendrite “tilting” is obviously not due to deformation of the solid (since it is assum
rigid), but due to the heat fluxes being higher on the upstream side than on the downst
side.

The evolution of all dendrite tip velocities, for two different grid resolutions, is plotte
in Fig. 14a and compared to the pure diffusion case. The upper tip and the two horizon
growing tips experience a minimum in the velocity before approaching a steady value.
initial decrease and the minimum are caused by the melt temperature being initially unif
atuj, = —0.55. On the other hand, the lower tip does not approach a steady growth reg
which can be attributed to the fact that the convective flow in the wake region near
lower tip continues to weaken due to the ever increasing size of dendrite. It can be seel
the orientation of the dendrite tip with respect to the flow has a very strong effect on
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FIG.13. Computed phase-field contours and velocity vectors (top panels) and isotherms (bottom panels)
the dendritic growth simulation with convectiontat 15, 66, and 96 in units of (from left to right).

steady tip velocities. The upper tip, where the flow impinges, grows about 40% faster
in the pure diffusion case, while the lower tip can be more than 30% slower. The horizo
tips, where the flow is normal to the growth direction, grow at approximately the same
as in the diffusion case. These results are in qualitative agreement with the experim
data of Glicksman and Huang [41]. Although the present computational parameters d
correspond to the supercoolings investigated by Glicksman and Huang, and the flow in
experiments was induced by buoyancy, it can be estimated that the ratio of the flow vels
to the tip growth velocity for their measurements wiiT =0.515 K was of the same

order of magnitude as in the present simulation [i.e., O(1)]. Based on Fig. 27 in Ref.
convection in theAT = 0.515 K experiments resulted in a roughly 40% enhancement
the velocity of the tip when the flow is opposite to the growth direction, and a reductior
around 60% for the tip growing parallel to the flow. Although this comparison is certair
not intended to be of a quantitative nature, and the actual percentages depend stron
the flow velocity, it shows that the present computations give correct trends.

The results of some basic numerical tests of the present method for dendritic growth
convection are shown in Table Il. In that table, computed steady state velocities (as we
tip radii; see below) of the upper tip that grows in a direction opposite to the flow are she
for varying grid resolution and diffuse interface thickness. It should be emphasized tha
dendrite tip velocity is a good quantity to use in such tests, because it is easily meas
from the computed results and, at the same time, highly sensitive to the tip operating
selection by the surface energy anisotropy. It can be seen that increasing the numt
control volumes from 166 320 to 288x 576 results in a roughly 10% decrease in th
tip velocity. Doubling the resolution again from 28876 to 576x 1152 changes the tip
velocity by only 1.6%, indicating that converged results are obtained with thex 298
grid. A comparison of the evolution of all tip velocities for the two finer grids is shown
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FIG. 14. Evolution of the tip velocities (a) and tip radii (b) measured from the results of the dendritic grov
simulation.

Fig. 14a, and again consistent results are obtained. The diffuse interface thickness ¢
most easily varied by changing the diffusividy, obviously for the phase-field method to be
converged, the computed results should be independé&htofd the interface thickness. In
order to maintain the same number of control volumes over the thickness of the interf
the grid spacing must be adjusted accordingly. Table Il shows that the upper tip veloc
agree to within better than 2% for all three interface thicknesses tested. Although n
detailed tests than shown in Table Il should be conducted in the future, our results ind
that the present method with flow performs similar to phase-field methods without fl
[14, 20, 38, 42]. Also noted in Table Il are the CPU times used in the computations. Tt



PHASE-FIELD MODEL WITH CONVECTION 493

TABLE Il
Results of Grid Resolution and Diffuse Interface Thickness Tests for Phase-Field
Simulations of Dendritic Growth with Convection

D do/ W N Ny Vd,/D p/do Tepu [N]
4 0.139 160 320 0.0265 8.10 3
4 0.139 288 576 0.0240 7.51 8
4 0.139 576 1152 0.0244 7.46 31
3 0.185 320 640 0.0248 7.48 17
2 0.277 512 1024 0.0247 7.61 70

Note Shown are the velocity/, and radiusp, of the upper tip that grows in a direction opposite
to the flow. In all tests the following parameters were held constar{0.55,¢ = 0.05,Pr=23.1,
Pe,=Udy/D=0.035,W=1, =1, AX/W =0.4. Tcpy denotes the CPU time in hours on a
HP-C200 workstationN, and N, are the number of control volumes in theandy directions,
respectively.

times should only be viewed as relative times as no effort was made to optimize the ¢
An almost linear relationship between the total number of control volumes and the C
time can be noted. The CPU time increases with decreasing interface thickness, be
smaller time steps must be used. The vast majority of the CPU time requirement is d
the flow solver, and more efficient numerical techniques can be used.

We have also measured the dendrite tip radii from the present simulation using a sir
method as in Ref. [42]. The evolution of the ragij, is plotted in Fig. 14b. For all tips,
the steady tip radii are only slightly above the pure diffusion value. For the upper tip,
can be attributed to two competing effects: the increased tip velocity due to flow wo
generally cause the tip radius to decrease because of stability considerations; howeve
impinging flow also tends to make the heat fluxes along the interface more uniform, resu
in a tip shape that is more blunt. For the horizontal tip, the effect of the flow is minin
because the flow is normal to the growth direction. Despite the fact that the lower tip gr
more slowly, the tip radius is about the same as in the diffusion case indicating that
flow in wake of the dendrite causes a more even distribution of the heat fluxes alonc
interface.

The knowledge of the tip radius and tip speed allows for the calculation of the tip Pe
number, defined as

V. .
pe— tipPip (55)
20
For diffusion-controlled growth, the Peclet number is related to the dimensionless su
cooling A at infinity by the two-dimensional Ivantsov relation [39]

A = /7 Peexp(Pe) erfc(+/Pe). (56)

For a supercooling of 85(= —ui,), the Peclet number from the above equation is equ
to PdYAN =0.257, while the Peclet number from the simulation with =0 is PesM =
0.060. The difference is in good agreement with the finding of Whetkelr [39] and Karma
and Rappel [14, 38] that the ratio®¢>'M/PdVAN decreases with increasing anisotropy. Mor:
discussion of this issue can be found in Refs. [20, 42].
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Finally, we examine the tip selection criterion for convection influenced dendritic grow
Usually, the selection criterion is written as

o* = [pip/do)Pd %, (57)

wherecs* is a stability or selection constant which varies with anisotropy strength (but
independent of supercooling) according to microscopic solvability theory [43, 44]. Base
the steady values of the tip radii and velocities in Figs. 14a and 14b, we fingl'tkat.48
for the upper tip and* = 2.42 for the horizontal tips. For the lower tip, we estimate the
o* =3.4 by averaging the tip velocity and radius fram: 80 to 100. For the pure diffusion
case, we find that* =251, which is in agreement with previous simulations and th
Green’s function analytical solution [14, 38]. The convection value*ofor the upper tip
is significantly below the diffusion value. This finding may be compared to the solvabil
calculation of Bouissou and Pel§45] that predicts a variation ef- with the flow velocity.
We are presently exploring this issue in more detail. The fact that the convection vz
of o* for the horizontal tips is quite close to the diffusion value is in agreement with t
experiments of Bouissoet al. [46], who found that* does not depend on the transvers
component of the flow. The estimated for the lower tip is much higher than the diffusion
value, indicating different growth mechanisms in the wake region. Obviously, this is:
needs further investigation as well.

9. CONCLUSIONS

A diffuse interface or phase-field model is presented for the direct numerical simula
of microstructure evolution in solidification processes involving convection in the ligu
phase. The mass, momentum, energy, and species conservation equations for the diffl
terface region are derived using volume averaging. An evolution equation for the phase
is obtained through a simplified geometrical derivation starting from the classical veloc
dependent Gibbs—Thomson equation for a sharp solid—liquid interface. The equations ¢
model are not derivable from a single Lyapovnov functional, but our computations dermnr
strate that this is not a limiting factor. In the limit of a thin interface, this model does inde
reduce to the classical equations and boundary conditions that one would write down
macroscopically sharp interface, which makes this model computationally useful indej
dently of the way in which itis derived. The phase-field equation, as well as the conserve
equations, completely avoid the explicit tracking of the interface, the explicit satisfactior
interfacial conditions, and the calculation of interface normals and curvatures. Furthermr
it is possible to perform calculations in the limit of vanishing interface kinetic effects.

In accordance with the averaging method, the drag between the solid and liquid ph
is modeled as a distributed momentum sink term in the diffuse interface region and is tz
to be linearly proportional to the relative velocity of the phases. The interfacial drag mc
is calibrated for plane flow past a stationary solid-liquid interface and is shown to
duce accurate results regardless of the diffuse interface thickness. The model is thoro
tested against analytical results for two-dimensional Stokes flow through regular array
cylinders. These results indicate excellent convergence properties for large diffuse inte
thickness to flow passage width ratios.

Two examples of application of the model to solidification/melting processes with nr
convection are presented. The first example involves convection and coarsening in an ist
mal mush of a binary alloy. Although the interface thickness is chosen to be unrealistic
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large, the expected coarsening asymptotics are predicted. Results are presented for tf
lution of the permeability of the mush due to coarsening. The second example represen
first fully resolved calculations of free dendritic growth of a pure substance in the prese
of melt flow. The dendrite tip velocities, radii, and selection criterion in the presence
flow are examined in some detail. Additional simulations are needed to fully underst
and characterize the system behavior in both of the above applications.
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