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A novel diffuse interface model is presented for the direct numerical simulation
of microstructure evolution in solidification processes involving convection in the
liquid phase. The solidification front is treated as a moving interface in the diffuse
approximation as known from phase-field theories. The no-slip condition between
the melt and the solid is realized via a drag resistivity in the diffuse interface region.
The model is shown to accurately reproduce the usual sharp interface conditions
in the limit of a thin diffuse interface region. A first test of the model is provided
for flow through regular arrays of cylinders with a stationary interface. Then, two
examples are presented that involve solid/liquid phase-change: (i) coarsening of a
mush of a binary alloy, where both the interface curvature and the flow permeability
evolve with time, and (ii) dendritic growth in the presence of melt convection with
particular emphasis on the operating point of the tip.c© 1999 Academic Press
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1. INTRODUCTION

The formation of morphological features in solidification of pure materials and alloys has
been investigated over many years and the literature abounds in references on subjects as
diverse as stability of a planar solid/liquid interface [1], dendritic growth [2], and coarsening
of a solid/liquid mixture [3, 4]. The selection of solidification patterns is controlled by the
interplay of thermal, solutal, capillary, and kinetic length or time scales [5]. Comparably little
is known about the influence of natural or forced convection on microstructure development.
Melt convection adds new length and time scales to the problem and results in morphologies
that are potentially much different from those generated by purely diffusive heat and solute
transport. Moreover, not only does convection influence the solidification pattern, but the
evolving microstructure can also trigger unexpected and complicated flow phenomena.
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Examples are the coupled convective and morphological instabilities at a growth front
investigated in detail by Coriellet al. [6] and Davis [7]. Other theoretical investigations
involving convective effects are often of a preliminary nature, decoupling the flow from the
interface evolution or applying only to limited parametric regions [8, 9]. The objective of
the present study is to develop a numerical method that can be used to study nonlinear and
fully coupled solidification and convection problems on a microscopic scale (first presented
in [10]). The emphasis in this paper is not on describing intricate numerical procedures,
but on deriving governing equations that can be easily implemented in standard codes for
coupled transport phenomena.

The phase-field method has recently emerged as a viable computational tool for simu-
lating the formation of complex interfacial patterns in solidification [11–13]. An overview
of the origins of this method in the context of continuum models of phase transitions can
be found in Karma and Rappel [14]. Udaykumar and Shyy [15] and Juric and Tryggvason
[16] provide a detailed discussion of the relative merits of this method and other numer-
ical techniques developed for solving problems with free interfaces that have a complex
topology. The phase-field method belongs to a larger class of methods that rely on treating
a microscopically sharp interface as a diffuse region immersed in the calculation domain.
A variableφ, called the phase-field variable in the context of the phase-field method, is
introduced that varies smoothly from zero to unity between the two phases over the diffuse
interface region, which has a small but numerically resolvable thickness. This variable also
serves to distribute the interfacial forces and other sources over the diffuse region.

The phase-field method derives its attractiveness from the fact that explicit tracking of the
interface and explicitly satisfying interfacial boundary conditions is completely avoided.
Other diffuse interface methods, such as the level set method [17], still require the accurate
computation of interface normals and curvatures. This is accomplished in the phase-field
method by solving a certain evolution equation for the phase-field variable. This evolution
equation can be rigorously derived from thermodynamically consistent theories of contin-
uum phase transitions (see, for example, Ref. [18]). In order to establish a clearer connection
with other diffuse interface methods, we present in this paper a simpler though less general
derivation starting from the classical velocity-dependent Gibbs–Thomson interface condi-
tion, which includes the effect of surface tension and the attachment kinetics of atoms at the
interface. A key feature of the phase-field evolution equation is that it contains an explicit
anti-diffusivity that maintains thin and well-defined interface regions without introducing
oscillations or violating conservation of mass [19].

The phase-field method, as well as other techniques that rely on a diffuse interface, can
be shown to reduce to the standard sharp-interface formulation in the limit of vanishing
interface thickness [1]. In actual computations, it is critical to understand how the quality of
the solution deteriorates with increasing interface thickness, because the grid spacing needs
to be of the order of or smaller than the interface thickness. In the context of phase-field
methods applied to solidification, Wheeleret al. [12] and Wanget al. [18] have shown
that the interface thickness must be smaller than the capillary length for the solution to
converge to the sharp-interface limit. Karma and Rappel [14] reexamined this issue and
derived coefficients for the so-called thin-interface limit of the phase-field equation, where
the interface thickness only needs to be small compared to the “mesoscale” of the heat
and/or solute diffusion field, and the classical interface conditions are satisfied for a finite
thickness. Their analysis allowed for the first time fully resolved computations to be made
for three-dimensional dendrites with arbitrary interface kinetics [20]. In our derivation of
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the model equations for the case of melt convection, we also use a thin-interface approach
and show that the interface thickness only needs to be small compared to the mesoscale of
the flow field.

Application of the phase-field and other diffuse interface methods to solidification has
been limited to problems where the transport of heat and/or solute is by diffusion only.
Jacqmin [19] recently presented an application of the phase-field method to two-phase
Navier–Stokes flows driven by surface tension at the interface between two fluids. In par-
ticular, a more complete version of the continuum surface tension method of Brackbill
et al. [21] was shown to result from the phase-field model. In this and other immersed
interface techniques for two-fluid flows, not only are the interfacial forces modeled as con-
tinuum forces distributed over the diffuse interface region, but other fluid properties, for
example, the density and viscosity, are also smeared over the interface region by varying
them smoothly from their values in one fluid to the ones in the other fluid. In the present
application to solidification with melt convection, we assume the solid phase to be rigid and
stationary and surface tension driven flows are not considered. We introduce a distributed
dissipative interfacial drag term in the Navier–Stokes equation that provides a consistent
and accurate way of modeling the usual no-slip condition at a microscopically sharp in-
terface. Our method can be used with any diffuse interface technique, but we present its
application only in the context of the phase-field method. It is important to note that the
present method does not rely on specifying a variable viscosity across the diffuse interface
region that tends to a large value in the rigid solid. While such an approach may be phys-
ically realistic for certain classes of materials, the variation would be difficult to specify
for a rigid solid. In addition, our method addresses in a physically realistic way the trans-
port of mass, momentum, heat, and solute by the ”residual” flow in the diffuse interface
region by including phase-field variable dependent advection terms in the conservation
equations.

The diffuse interface versions of the mass, momentum, species, and energy conservation
equations are derived next, which is followed by a geometrical derivation of the evolution
equation for the phase-field variableφ. The model is first applied to one-dimensional Couette
and Poiseuille flows with a stationary diffuse interface, as well as to flow around a more
complicated “microstructure” consisting of regular arrays of cylinders. These test cases
allow for a comparison with analytical solutions and an examination of the accuracy of
the solution for increasing thickness of the diffuse interface. Then, two examples involving
solidification with melt convection are presented. The first example is concerned with
adiabatic coarsening of an isothermal solid/liquid mixture of a binary alloy with melt flow,
finite-rate diffusion of solute in the solid phase, and convection of solute in the liquid phase.
Both, the effects of convection on coarsening and the profound influence of coarsening
on the flow, are demonstrated. The second example deals with the effect of convection on
dendritic growth of a pure substance in a supercooled melt. The effect of the flow on the
dendrite tip speed and curvature is investigated in some detail.

2. CONSERVATION EQUATIONS FOR A DIFFUSE INTERFACE

The conservation equations for mass, momentum, energy, and species are derived by
treating the microscopically sharp solid/liquid interface as a diffuse region where the solid
and liquid phases coexist. The phase-field variable,φ, varies smoothly from zero in the
bulk liquid to unity in the solid and can be viewed as a volume fraction solid. Conservation
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FIG. 1. Schematic illustration of the diffuse solid–liquid interface, the averaging volume, and the phase-field
variable variation normal to the interface.

equations are needed that are valid not only in the solid and liquid phases, but also in the
diffuse interface region. Our basic strategy in deriving such equations is to use the same
kind of volume or ensemble averaging methods that have been used to derive conservation
equations for other multiphase systems [22–24]. In solid/liquid phase change with a mi-
croscopically sharp interface, a diffuse interface region physically exists only on an atomic
scale and can be associated with a density profile [25]. As shown in Fig. 1, the atomic-scale
solid fraction is therefore defined for a representative elementary volumeV0, that is larger
than the length scale associated with the atomic structures and much smaller than the diffuse
interface region. It should not be confused with the solid fraction used in descriptions of
mushy zones existing on a macroscopic [O(10−1 m)] scale.

The present approach results in physically meaningful model equations that are consis-
tent not only with the phase-field but any diffuse interface method. Volume or ensemble
averaging allows for a rigorous derivation of the conservation equations for multi-phase
mixtures (i.e., for the diffuse interface) from the basic continuum equations for single-
phase substances. One result of the averaging is that the surface forces and other sources at
microscopically sharp interfaces are represented as volume forces and sources that are dis-
tributed over the diffuse interface region. Furthermore, the averaged conservation equations
explicitly contain the phase-field variable and reduce to the correct forms in the limit of a
sharp interface. The phase-field variableφ is formally related to the volume or ensemble
average of an existence function,Xs , which is unity in the solid and zero otherwise [23],
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via

φ = φs = 1− φl = 1

1V

∫
1V

Xs dV = 〈Xs〉, (1)

where the symbols〈 〉 denote an average over the volume1V , which is macroscopically
small. The average interfacial area,1Ai , between the solid and liquid per unit volume is
given by

1Ai

1V
= 〈|∇Xs|〉 = |∇φ| (2)

and the average unit normal vector exterior to the solid,n, and curvature,κ, of the micro-
scopic solid/liquid interface are defined by

n =
〈
− ∇Xs

|∇Xs|
〉
= − ∇φ|∇φ| (3)

and

κ = ∇ · n = − 1

|∇φ|
[
∇2φ − (∇φ∇)|∇φ||∇φ|

]
. (4)

A general advection-diffusion equation, valid at a point within a phasek, for any conserved
quantity9 can be expressed as

∂

∂t
(ρ9)+∇ · (ρv9)+∇ · j = 0, (5)

whereρ, v, and j are the density, velocity, and diffusive flux, respectively. Volumetric
sources are not considered. Averaging this equation over1V yields the following general
conservation equation for phasek in a multi-phase system [23]

∂

∂t
〈Xkρ9〉 + ∇ · 〈Xkρv9〉 + ∇ · 〈Xkj 〉 − 〈[ρ9(v− vi )+ j ]k · ∇Xk

〉 = 0, (6)

wherevi · ∇Xk=−∂Xk/∂t defines the velocityvi of the interface. In the absence of
interfacial sources (e.g., surface tension), the sum of the advective and diffusive fluxes
across the interface, given by the last term in Eq. (6), must be equal on both sides of the
interface.

In the following, we provide the averaged mass, momentum, energy, and species conser-
vation equations for a simple binary alloy undergoing solid/liquid phase-change. Some of
the details of the derivations can be found in Refs. [23, 24]. In order to keep the equations
simple, the densities of the liquid and solid phases are assumed equal and constant, i.e.,
ρs= ρl = ρ= const. The intrinsic or phase average of a variable9 is defined by

9k = 〈Xk9〉/φk (7)

and average mixture quantities by

9 =
∑
k=s,l

〈Xk9〉 =
∑
k=s,l

φk9k. (8)
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The overbar is omitted in the following. Furthermore, all dispersive fluxes, arising from
averages of thev9 product, and tortuosities in the diffusive fluxes are neglected as a first
approximation. The solid is assumed to be stationary and rigid, i.e.,vs= 0, such that a
momentum equation for the solid phase is not needed.

Mass

The mixture continuity equation is obtained by summing the averaged solid and liquid
continuity equations, which can be obtained by setting9 = 1 andj = 0 in Eq. (6). Then,

∇ · [(1− φ)vl ] = 0, (9)

wherevl is the averaged intrinsic liquid velocity and(1− φ)=φl .

Momentum

The averaged liquid(k= l ) momentum equation can be derived from Eq. (6) by setting
9 = v and−j = −PI + τ , whereP is the pressure,I is the unit tensor (i.e., identity matrix
δi, j in Cartesian coordinates), andτ is the viscous stress tensor. Hence,

∂

∂t
[(1− φ)ρvl ] +∇ · [(1− φ)ρvl vl ]

= −∇[(1− φ)Pl ] +∇ · [(1− φ)τ l ] +
〈
[ρv(v− vi )+ PI − τ ]l · ∇Xl

〉
. (10)

The interfacial momentum source term, i.e., the last term in Eq. (10), can be simplified by
realizing that [v(v− vi )]l · ∇Xl = 0 for equal densities of the phases andvs= 0. Further-
more, by defining an average interfacial pressure of the liquid,Pl ,i , as [23]

Pl ,i∇φl = Pl ,i∇(1− φ) =
〈
[ PI ]l · ∇Xl

〉
(11)

and assuming that compressibility effects are negligible such that microscopic pressure
equilibrium exists, i.e.,Pl ,i = Pl , the pressure contribution to the interfacial momentum
source can be combined with the average pressure gradient term, i.e., the first term on the
right-hand side of Eq. (10), to give−(1− φ)∇Pl . Finally, the average viscous stress term,
i.e., the second term on the right-hand side of Eq. (10), can be modeled for an incompressible
Newtonian liquid with constant viscosity,µl , a stationary solid and equal phase densities,
as [24]

∇ · [(1− φ)τ l ] = ∇ · (µl∇[(1− φ)vl ]). (12)

This model is in accordance with the usual theories of flow through porous media [22–24],
where the average viscous stress is taken to be proportional to the gradient of the superficial
liquid velocity,(1− φ)vl . Now, Eq. (10) can be rewritten as

∂

∂t
[(1− φ)ρvl ] +∇ · [(1− φ)ρvl vl ]

= −(1− φ)∇Pl +∇ · (µl∇[(1− φ)vl ])−
〈
[τ ]l · ∇Xl

〉
. (13)
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The last term on the right hand side of Eq. (10) accounts for the dissipative viscous stress
in the liquid due to interactions with the solid in the diffuse interface region. This term is
of key importance to the present study and is modeled in a subsequent section. Note that in
the liquid (φ= 0), Eq. (13) reduces to the usual single-phase Navier–Stokes equation for a
Newtonian fluid with constant density and viscosity.

Energy

By summing up the averaged energy conservation equations for the solid and liquid
phases and assuming that the heat flux is given by Fourier’s law, we obtain the following
mixture energy equation

∂

∂t
(ρh)+∇ · [(1− φ)ρvl hl ] = ∇ · [φλs∇Ts + (1− φ)λl∇Tl ], (14)

whereh denotes the mixture enthalpy,h=φhs+ (1− φ)hl . Assuming equal and constant
specific heats, i.e.,cl = cs= cp, and equal thermal conductivities, i.e.,λl = λs= λ, defining
the latent heat of fusion ashl − hs= L, and assuming locally equal phase temperatures, i.e.,
Tl = Ts= T , we obtain

∂T

∂t
+∇ · [(1− φ)vl T ] = α∇2T + L

cp

∂φ

∂t
, (15)

whereα= λ/(ρcp) is the thermal diffusivity.

Species

Again, summing up the averaged species equations for the solid and liquid phases and
assuming that the diffusive species flux is given by Fick’s law, the following mixture species
equation is obtained [24, 26]

∂

∂t
[φCs + (1− φ)Cl ] +∇ · [(1− φ)vl Cl ] = ∇ · [φDs∇Cs + (1− φ)Dl∇Cl ], (16)

whereCk andDk are the species concentration and binary mass diffusivity, respectively, for
each phase. Before Eq. (16) can be solved, a relationship between the species concentrations
in the solid,Cs , and liquid,Cl , needs to be found. Assuming local equilibrium on the atomic
scale (as with the temperatures), a binary partition coefficient can be defined as

k = Cs

Cl
. (17)

Defining an average mixture concentration,C, according to Eq. (8), the phase concentrations
can be expressed as

Cs = kC

1− φ + kφ
and Cl = C

1− φ + kφ
(18)

and Eq. (16) can be rewritten as

∂C

∂t
+∇ ·

(
1− φ

1− φ + kφ
vl C

)
= ∇ · D̃

[
∇C + (1− k)C

1− φ + kφ
∇φ
]
, (19)
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where

D̃ = Ds + (Dl − Ds)
1− φ

1− φ + kφ
. (20)

Equation (19) can be solved for the mixture concentration. Then, the solid and liquid con-
centrations are obtained from Eq. (18). The present mixture species conservation equation
has a clear physical interpretation. The prefactor before the velocity in Eq. (19) implies
that only the liquid species are advected with the superficial liquid velocity,(1− φ)vl . The
effective diffusion coefficient,̃D, can be viewed as a mixture diffusivity. The last term in
Eq. (19) is a diffusive flux that is proportional to the segregation amount(1− k)C

1−φ+ kφ = Cl−Cs

and is in the direction of the average interface normal (i.e., across the interface).
It is interesting to make contact with existing models of alloy solidification [12, 27, 28],

as well as the basic thermodynamics of dilute alloys, by noting that Eq. (19) can be rewritten
(for simplicity without flow) in a variational form

∂C

∂t
= ∇ ·

(
M∇ δF

δC

)
(21)

similar to the Cahn–Hillard equation [29]. In this context,M = D̃C, can be interpreted as
an atomic mobility, and the function

F(φ,C) = C ln

[
C

1− φ + kφ

]
− C +8(φ,∇φ, . . .) (22)

as the bulk free-energy of the system, where8(φ,∇φ, . . .) is an arbitrary function ofφ and
its higher gradients that does not appear in Eq. (19) after taking the functional derivative in
Eq. (21). Consequently, the chemical potential,µ= ∂F/∂C= ln[C/(1−φ+ kφ)], equals
ln Cl in the liquid phase(φ= 0) and lnCs in the solid phase(φ= 1), which are precisely
the standard entropic contributions derived from first principles of thermodynamics [30].
Therefore, it is interesting that although Eq. (19) is derived from an averaging method, as
opposed to variationally, it can be given a proper thermodynamic interpretation. However,
one difference between the present model and other phase-field models of alloy solidification
[12, 27, 28] is that we shall not require the equations forφ andC to be derivable from
a single free-energy functional. For example, we shall not require that the equation of
motion forφ, described in the next section, be of the formφ̇ ∼ −δF/δφ, whereF is the
free-energy defined by Eq. (22). Relaxing this gradient flow constraint on the equations
generally provides more flexibility in the choice of the phase-field model, and even some
computational advantages [20]. We stick here to the point of view that the phase-field
equations are only quantitatively meaningful in the sharp-interface limit where they can be
ultimately related to experiment.

3. PHASE-FIELD EQUATION

We present a simple geometrically motivated derivation of the phase-field equation start-
ing from the phenomenological Gibbs–Thomson interface relation. The derivation is only
intended to clarify the connection between the phase-field method and other immersed
interface techniques that utilize a diffuse interface.
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The Gibbs–Thomson equation for an isotropic surface energy and a simple binary alloy
can be written as

vn

µk
= Tm − T +ml Cl − 0κ, (23)

wherevn is the normal interface speed,µk is a linear kinetic coefficient,Tm is the equilibrium
melting temperature of the pure substance,ml is the slope of the liquidus line from an
equilibrium phase diagram, and0 is the Gibbs–Thomson coefficient. The normal interface
speed is given by

vn = vi · n = vi ·
(
− ∇φ|∇φ|

)
= ∂φ/∂t

|∇φ| . (24)

Substituting Eq. (24) and the expression for the curvature,κ, given by Eq. (4), into Eq. (23)
yields

∂φ

∂t
= vn|∇φ| = µk0

[
∇2φ − (∇φ∇)|∇φ||∇φ|

]
+ µk(Tm − T +ml Cl )|∇φ|. (25)

Equation (25) does not have a unique solution for a stationary front profile forφ. Such
a profile has to be specified separately and corresponds to the choice of a kernel. Unlike
in other diffuse interface methods, the profile is physically motivated in the phase-field
method. The most commonly used profile results from the choice of a double-well potential
for the Gibbs free energy in the derivation of the phase-field equation [12, 13]. The profile
is given by

φ = 1

2

(
1− tanh

n

2δ

)
, (26)

wheren is the coordinate normal to the interface and 6δ is the interface thickness over which
φ varies from 0.05 to 0.95. With Eq. (26), the average interfacial area per unit volume is
given by

|∇φ| = ∂φ

∂n
= φ(1− φ)

δ
(27)

and the second term in the expression for the curvature, Eq. (4), becomes

(∇φ∇)|∇φ|
|∇φ| = ∂2φ

∂n2
= φ(1− φ)(1− 2φ)

δ2
. (28)

Substituting Eqs. (27) and (28) into Eq. (25) results in the present phase-field-like equation

∂φ

∂t
= µk0

[
∇2φ − φ(1− φ)(1− 2φ)

δ2

]
+ µk(Tm − T +ml Cl )

φ(1− φ)
δ

(29)

which has for a stationary profile Eq. (26) in equilibrium,T = Tm+ml Cl . The last term
in Eq. (29) represents the thermo-solutal driving force forφ, while the first term on the
right-hand side represents surface tension and is an anti-diffusivity that maintains a thin and
well-defined interface.
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In a non-stationary growth situation, the instantaneous profile ofφ along the local normal
direction will only differ slightly from the stationary profile defined by Eq. (26) ifδ is small,
such that in the limitδ→ 0, the phase-field equation faithfully reproduces the interface
condition Eq. (23). Using a reformulated asymptotic analysis of the phase-field model
of a pure melt(Cs=Cl = 0), Karma and Rappel [20] have recently shown that there are
corrections to this interface condition whenδ is small compared to the macro scale of the
diffusion field, but finite, which is the typical case in computations. If one applies the result
of their analysis to the phase-field equation, Eq. (29), coupled to the transport equation,
Eq. (15), and converts the result to the present notation, one obtains the standard interface
condition,vn/µ

eff
k = Tm−0κ , where

1

µ
eff
k

= 1

µk

[
1− A

δ

α

µkL

cp

]
(Cl = 0). (30)

µ
eff
k is an effective kinetic coefficient andA= 5/6. Note that the finiteδ correction to the

interface condition originates from the variation of the temperature field in the interface
region. For this reason, bothα and L/cp appear in the expression forµeff

k . One nice fea-
ture of this result is that one can choose the dimensionless combination of parameters
AδµkL/αcp= 1 and reproduce the condition of local equilibrium at the interface (i.e., in-
stantaneous attachment kinetics), which is experimentally relevant at low growth rate. It
should be emphasized that Eq. (30) is only valid for pure melts. For the case of isothermal
alloy solidification, i.e., Eq. (29) coupled to the transport Eq. (19) with uniformT , an anal-
ysis similar to that of Ref. [20] leads to the conclusion that the finiteδ corrections to the
interface condition do not simply lead to a renormalization of the kinetic coefficient [31].
There is generally a discontinuity of chemical potential at the interface and the corrections
to the interface concentration on the two sides of the interface are proportional to the normal
gradient of solute at the interface [31]. For the study of isothermal coarsening presented in
Section 7, these corrections appear to have a small effect on the dynamics since we recover
scaling laws that agree with sharp interface theories. This is consistent with the fact that
these additional corrections to the interface condition (discontinuity of chemical potential
and gradient corrections) are proportional to the interface velocity. This velocity is generally
small during coarsening, except during the coalescence or disappearance of particles. In
contrast, during dendritic growth, small kinetic variations of temperature along the interface
can profoundly influence the selection of the operating state [32]. Therefore, in this case, it
is important to include such corrections.

4. MODELING OF THE INTERFACIAL STRESS TERM

Central to the present method is the modeling of the dissipative interfacial stress term,
Md

l , in the momentum equation for the liquid, Eq. (13), i.e.,〈[τ ]l · ∇Xl 〉. Noting the delta-
function like properties of the∇Xk operator, this term can be rewritten as

Md
l =

〈
[τ ]l · ∇Xl

〉 = τ l ,i · ∇φl = −τ l ,i · ∇φ = τ l ,i · n|∇φ|, (31)

whereτ l ,i is the average viscous stress tensor at the interface. The viscous stress is generally
proportional to the liquid viscosity and a velocity gradient. As a first approximation, and in
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analogy with the friction term used for slow flow in porous media [24], we can write

Md
l = hµlφ

vl

δ
|∇φ|, (32)

whereh is a dimensionless constant. In Eq. (32), we have assumed thatvl varies linearly
across the diffuse interface of thicknessδ. The inclusion of the phase-field variable,φ, is
strictly not necessary, but corresponds physically to an increasing interfacial stress with
“solid fraction.” The constanth is similar to a dimensionless friction coefficient and its
value is determined analytically in the next section. Substituting Eq. (27) for the interfacial
area per unit volume,|∇φ|, the final expression suitable for computations is obtained as

Md
l = µl

hφ2(1− φ)
δ2

vl . (33)

The drag term vanishes in the single-phase liquid(φ= 0). In the limit of a sharp interface,
δ→ 0, the prefactor in Eq. (33) becomes infinitely large, thus reproducing the usual no-slip
condition(vl = 0) at the solid/liquid interface. For a diffuse interface region of small but
finite thickness, as is the case here, the above friction term acts as a distributed momentum
sink that gradually forces the liquid velocity to zero asφ→ 1.

5. ASYMPTOTICS FOR PLANE FLOW PAST A STATIONARY

SOLID–LIQUID INTERFACE

The properties of the present model for the dissipative interfacial stress can be exam-
ined in detail for a simple flow which can be described analytically. Such a basic flow is
plane Poiseuille flow past a stationary solid–liquid interface. By performing an asymptotic
analysis, matching the inner solution in the diffuse interface region with the correct outer
velocity profile corresponding to a sharp interface (i.e., with a no-slip condition atφ= 0.5),
the dimensionless constanth in Eq. (33) is determined.

Consider Poiseuille flow between two parallel plates oriented along the y-axis and with
the plates located atx= 0 andx= 2L (Fig. 2). The solid–liquid interface is assumed to be
stationary and is represented by the lower plate (atx= 0). In the case of a sharp interface,
the momentum equation is

µl
d2vl

dx2
= d P

dy
= −µl F, (34)

wherevl is the y-component of the liquid velocity,d P/dy is the applied pressure gradient,
and F is a short-hand notation for the pressure drop per unit length and viscosity. The
solution of Eq. (34), applying no-slip conditions at the plates, is

vl = x F L[1− x/(2L)]. (35)

For the diffuse interface case, the corresponding momentum equation is obtained from
Eq. (10) as

µl
d2(1− φ)vl

dx2
− hµl

φ2(1− φ)
δ2

vl = (1− φ)d P

dy
. (36)
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FIG. 2. Schematic illustration of the velocity profiles for Poiseuille flow with a sharp and a diffuse interface
representing the lower boundary.

Introducing the inner variableX= x/δ and the mixture velocityv= (1− φ)vl , and using
the same definition ofF as above, yields

d2v

d X2
− hφ2v = −δ2F(1− φ). (37)

We will first consider the limit of smallδ, where the right-hand side of Eq. (37) can be
neglected such that

d2v

d X2
− hφ2v = 0. (38)

This limit corresponds to a linear velocity profile in the region outside the diffuse interface
(Couette flow). We now seek to match the inner solution of Eq. (38) to the outer solution
defined by Eq. (35) in the liquid, and zero velocity in the solid. Therefore, the matching
conditions are

v(X→−∞) = 0 (39)

and

v = (F Lδ)X for 1¿ X ¿ L/δ. (40)

Let us now consider the analytic asymptotic behavior ofv(X) for |X| À 1. For a general
value ofh we have

v(X) = Aexp(
√

hX) for X < 0 (41)

v(X) = Aα(h)[X − Xi (h)] for X > 0, (42)
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whereA is a constant andα(h) andXi (h) are functions ofh only. Since Eq. (42) is linear,
A can be chosen such that

A = F Lδ/α(h). (43)

However,Xi (h), which is the effective interface position where the flow velocity vanishes,
is only zero for a special value ofh= h? that needs to be determined. Hence, the matching
condition given by Eq. (40) can only be satisfied ifXi (h?)= 0. By solving Eq. (35) with a
fourth-order Runge–Kutta ODE solver, the value ofh? was determined to be

h? = 2.757. (44)

The important property ofh? is that it does not depend on the imposed pressure gradient
and flow field in the outer region. The present result holds for more general flows because
in the limit of smallδ there is always a linear velocity gradient normal to the interface. In
addition, an extension of the analysis of Karma and Rappel [20] to the present model leads
to the result that the tangential flow inside the thin interface region does not modify the
velocity-dependent Gibbs–Thomson condition,vn/µ

eff
k = Tm− T −0κ, and the expression

for the effective kinetic coefficient Eq. (30), which remains applicable with flow.
For the case of a linear velocity profile (Couette flow), the behavior of the solution

for different values ofh and different interface thicknessesδ is shown in Fig. 3. It can
be seen that forhÀ 2.757, the velocity profile for the diffuse interface does not match
the “exact” linear profile for a sharp interface but is significantly shifted. On the other
hand, forh= 2.757, there is a perfect match regardless of the diffuse interface thickness.
This independence ofh on the interface thickness is the main advantage of the present
method.

FIG. 3. Computed velocity profiles for Couette flow past a stationary solid–liquid interface; results are shown
for two different interface thicknesses and the dimensionless interface friction coefficienth= 2.757, as well as for
a thin interface withhÀ 2.757.
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While the independence ofh? on the interface thicknessδ is true for an infinite liquid
region (i.e.,δ/L→ 0), it is useful to examine howh? changes with finiteδ/L. Let us define
the small parameter

ε = δ/L (45)

and a dimensionless velocity

ṽ = v

F Lδ
. (46)

Then, Eq. (37) becomes

d2ṽ

d X2
− hφṽ = −ε(1− φ). (47)

We are now looking for a solution of the above equation for smallε that matches the exact
Poiseuille flow

ṽ = X(1− εX/2) for |X À 1| (48)

and decays to zero in the solid

ṽ(X→−∞) = 0. (49)

There is again a unique value ofh= h?(ε) for which this is possible, but which now depends
onε. A plot of h?(ε) is shown in Fig. 4. Forε increasing to 0.1,h? decreases by only about
5%. Such small changes inh? have a negligible effect on the computed velocity profile
outside the diffuse interface region. Figure 5 shows computed velocity profiles for different
ε= δ/L for Poiseuille flow. Already forφ <0.2, and certainly in the pure liquid region, the
diffuse interface profiles match the exact profile for a sharp interface atφ= 0.5 extremely

FIG. 4. Dependence of the dimensionless interface friction coefficienth on the ratio of the interface thickness
to the half-width of the flow passage,ε, in Poiseuille flow.
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FIG. 5. Computed velocity profiles for Poiseuille flow in a channel where the lower boundary is a stationary
solid–liquid interface (see Fig. 2); results are shown for three different interface thicknesses.

well. For a general flow, one should use the constanth?(ε= 0) and decreaseε until the
dependence onε becomes negligible.

6. VALIDATION FOR TWO-DIMENSIONAL FLOW

A stringent test problem for the performance of the present diffuse interface model is
given by Stokes flow through regular arrays of infinite cylinders as shown in Fig. 6. Unit cells
containing both square and triangular arrangements are considered. The flow is periodic
in the horizontal direction, forced by an external pressure gradient, and symmetric at the
top and bottom boundaries. Analytical expressions for the drag force on the cylinders as a
function of the solid fraction,fs, in the unit cell have been obtained by Sangani and Acrivos
[33] and Drummond and Tahir [34]. This test problem thus allows for a close examination
of the ability of the present method to give the correct forces on a body, in particular for flow
past a curved interface. In addition, the results for larger solid fractions, when the cylinders
almost touch each other, provide a test for cases where the ratio of the interface thickness
to the width of the flow passage (i.e.,ε) is not small.

The two-dimensional momentum and continuity equations were solved numerically using
a standard control-volume, implicit discretization scheme [35]. The distribution of the phase-
field variableφ was set before a computational run using a radially symmetric tangent
hyperbolic profile to affect the smearing of the (stationary) solid/liquid interface. This
is illustrated by the variation of gray tones in Fig. 6. A square grid of 51× 51 control-
volumes was utilized in the simulations for the square array, and 52× 45 for the triangular
array. The interface thickness corresponded to about five control-volumes. The numerical
results, together with the analytical predictions, are plotted in Figs. 7a and 7b. The mean
liquid velocity through the unit cell is normalized by the pressure drop per unit width
(drag force) and 4πµl . It can be seen that the numerical results are generally in excellent
agreement with the exact Stokes flow solutions. Minor deviations are present for small
solid fractions, which can be attributed to the relatively coarse numerical grid used. For the
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FIG. 6. Unit-cells and sample computed velocities for the simulation of flow through regular arrays of infinite
cylinders; the flow is periodic in the east–west direction and the diffuse solid–liquid interface is reflected by the
gray levels: (a) square array; (b) triangular array.

smallest volume fraction, the diameter of the cylinders (measured atφ= 0.5) contains only
six grid cells, implying that the diffuse interface thickness is of the same magnitude as the
cylinder diameter. Nonetheless, remarkably accurate results are obtained. For the square
array (Fig. 7a), large differences in the predictions occur for solid fractions greater than
about 0.5. This can be attributed to the fact that the analytical solutions break down in this
regime. The present numerical method correctly predicts the mean velocity approaching
zero when the packing fraction is reached. No such disagreement exists for the triangular
array (Fig. 7b). The computational results at high solid fractions, when the diffuse interfaces
from neighboring cylinders almost overlap, show that the present model has excellent
convergence properties for large interface thickness to flow passage width ratios (i.e.,ε).
Our preliminary tests indicate that other methods, including the popular smeared viscosity
approach (see Introduction), are unlikely to produce results of similar accuracy for largeε.

7. EXAMPLE 1: SIMULATION OF CONVECTION AND COARSENING

IN AN ISOTHERMAL MUSH OF A BINARY ALLOY

As a first application involving solid/liquid phase-change, the capillary-driven coarsening
of and flow through a mush of an Al-4 wt.% Cu alloy is simulated. The two-dimensional
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FIG. 7. Comparison of the computed normalized mean velocities through regular arrays of cylinders (see
Fig. 6) as a function of the volume fraction of cylinders with the analytical results of Sangani and Acrivos [33]
and Drummond and Tahir [34]: (a) square array; (b) triangular array.

system consists of a random array of cylinders, which can be interpreted as a cross section
through an array of dendrites. The initial size distribution of the cylinders is set according to
the coarsening theory of Marqusee [36]. Periodic and/or symmetric conditions are applied
at the boundaries of the square domain of size 0.81 mm2. The system is assumed to be
isothermal, such that its temperature can be evaluated from the conservation law

ρcpT = L fs. (50)
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TABLE I

Thermophysical Properties Used in the Al–4%Cu

Coarsening Simulations [10]

Property Value

Tm 933.6 K
ml 2.6 K/%
0 2.41× 10−7 mK
Dl 3× 10−9 m2/s
Ds 3× 10−13 m2/s
K 0.14
ρL 9.5× 108 J/m3

ρcP 2.58× 106 J/Km3

ρ 2.475× 103 kg/m3

µ 0.014 Poise
6δ 1.27× 10−5 m
µk 2.6× 10−5 m/sK

Note. For practical reasons the value ofδ was chosen to
be approximately equal to the length of one grid cell—the
actual interface thickness, 6δact., is of the order of 10−9 m; the
actual kinetic coefficient,µact.

k , is approximately 0.33 m/sK.
The value in the table was obtained by multiplyingµact.

k by
the ratioδact./δ.

The initial mean solid fraction,fs, for all simulations reported here is 20.7%. The initial
concentration distribution in each cylinder and the melt is set according to the Scheil equa-
tion. All material data are summarized in Table I. The simulations are performed on a
301× 301 grid and for a sufficiently long time to achieve self-similar coarsening behavior.
Computed results for a simulation case without convection are shown in Figs. 8a–8d. The
gray tones indicate the copper concentration, while the thick solid lines show the position of
the solid/liquid interface (φ= 0.5). It can be seen that the different curvature supercoolings
of the various size cylinders cause concentration gradients to develop in the liquid between
the solid, through which the cylinders exchange species by diffusion. This causes the larger
cylinders to grow at the expense of the smaller cylinders, leading to the expected coarsen-
ing behavior. High concentration gradients are notable during coalescence of two cylinders,
because negative curvatures result in an enhanced interface concentration according to the
Gibbs–Thomson relation. At later times, a complex concentration distribution develops in
the solid, reflecting the time history of the melting and resolidification processes.

Figures 8e–8h show predictions for a case with the same initial conditions as in the pre-
vious case, but with a melt flow through the system from the top to the bottom. The flow
is driven by a constant externally imposed pressure drop of 0.2 N/m2. The flow advects
solute in the liquid, leading to a markedly different coarsening behavior. This is illustrated
in Fig. 9, which shows a comparison of the evolution of the total interfacial area per unit
depth,S, between the diffusive and convective cases. In both cases, coarsening leads to a
reduction in the interfacial area with time. In the diffusive case, the long-time behavior is
described by a coarsening law of the formS ∼ t−1/3. The coarsening exponent of−1/3
is in perfect agreement with LSW theory [3, 4]. On the other hand, the coarsening exponent
in the convective case is−1/2, indicating a faster coarsening rate. The exponent of 1/2 is
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FIG. 8. Time histories for 2D coarsening simulations of an Al–4% Cu alloy mush with an initial solid fraction
of 20.7% (approximately constant); the black contour lines correspond to8= 0.5 and show the position of the
solid–liquid interface; the gray shades indicate the Cu concentrations in the liquid (10 equal intervals between 4.861
and 4.871%) and solid (4 equal intervals between 0.682 and 0.6805%): (a) to (d) are purely diffusive conditions;
(e) to (h) with forced convection in the north–south direction.

in agreement with the analysis of Ratke and Thieringer [37] for coarsening in the presence
of a Stokes flow.

It can also be observed from Figs. 8e–8h that the flow velocities are continually increasing
with time, although the imposed pressure drop is constant. The increase simply reflects the
decrease in fluid friction due to a reduction in the interfacial area. For slow flow through a
porous medium, the mean velocity,U , can be related to the pressure drop,1P, across the

FIG. 9. Evolution of the total interfacial area per unit depth in the 2D coarsening simulations for purely
diffusive conditions and with melt convection.
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FIG. 10. Evolution of the permeability normalized either by the interfacial area per unit depth or the mean
radius in the 2D coarsening simulations with melt convection.

system of lengthL by Darcy’s law as

µl U = K1P/L , (51)

whereK is the permeability. Hence, the increase in the mean velocity implies an increase
in the permeability. The above equation allows for the calculation of the permeability
from the present simulation results. Figure 10 shows the variation of the permeability with
time. The two curves correspond to the permeability normalized with the interfacial area
(K · S2) and with the mean radius(K/R2). Due to this normalization, the permeability is,
as expected, approximately constant with time. The mean radius appears to provide slightly
better scaling. The fluctuations in both curves are due to the limited number of cylinders
used in the simulation, which leads to relatively abrupt changes in the mean flow when a
cylinder disappears or when two cylinders coalesce. The fact that the radius normalized
permeability is constant implies not only Stokes flow behavior (i.e.,U ∼ R2), but also
confirms the coarsening exponent of 1/2.

Overall, the above simulations provide a good illustration of the capabilities of the present
model. Although the results are shown to be realistic, a more detailed analysis and parametric
studies are desirable to fully understand the system behavior. This will be presented in the
near future.

8. EXAMPLE 2: DENDRITIC GROWTH IN THE PRESENCE OF CONVECTION

The second application of the present model involves equiaxed dendritic growth of a
pure substance into a uniformly supercooled melt that is flowing around the crystal. It is
well known that the dendrite tip speed and curvature are extremely sensitive to the variation
of the surface energy along the crystal/melt interface and the anisotropy introduced by the
crystalline structure. Only in the past few years have computational studies been reported
of dendritic growth in the absence of flow that are fully validated against exact numerical



488 BECKERMANN ET AL.

FIG. 11. Illustration of the physical system used in the simulation of free dendritic growth of a pure substance
in a supercooled melt with and without melt convection.

solutions, such as microscopic solvability theory [14, 38–40]. Interestingly, most of these
studies utilize the phase-field method. Although other computational methods have been
employed to simulate dendritic growth in the absence of flow (e.g., Refs. [16, 17]), their
results have not been fully validated. Here, we report on the first calculations of dendritic
growth in the presence of convection. While we can compare our no-flow results to available
benchmarks, no analytical solutions or computational results are available for comparison
in the flow case. For the computations with convection, we present basic numerical tests
that demonstrate the performance of the method for varying diffuse interface thickness and
grid resolution.

The physical system is illustrated in Fig. 11. The domain size is square and a circular seed
exists initially in the center. The crystal axes are aligned with thex-y coordinate axes. The
melt flows from the top to the bottom with a uniform inlet velocity. Symmetry conditions are
applied on the side walls of the domain. The initial velocities are taken to be those for steady
flow around the seed. The inlet and initial melt temperature are the same. No noise was
introduced into the calculations, preventing the growth of higher-order dendrite arms [38].

The phase-field equation employed in this example is the same as in Ref. [20] and takes
the form in the present notation

g2
s

∂φ

∂t
= µk0

[
∇ · (g2

s∇φ
)− ∂

∂x

(
gsg
′
s

∂φ

∂y

)
+ ∂

∂y

(
gsg
′
s

∂φ

∂x

)
− φ(1− φ)(1− 2φ)

δ2

]
+ 5µk(Tm − T)

φ2(1− φ)2
δ

, (52)

where the termgs= 1+ ε4 cos 4θ represents the anisotropy in the surface energy (for a
crystal of cubic symmetry and anisotropy strengthε4), θ = arctan[(∂φ/∂y)/(∂φ/∂x)] is the
angle between the interface normal and the crystal axis, and the prime denotes differentiation
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with respect toθ . Aside from the inclusion of anisotropy, Eq. (52) is almost identical to
Eq. (29). One difference is that the last term,φ(1−φ) in Eq. (29), is replaced by 5φ2(1−φ)2
in Eq. (52). The latter form corresponds to a greater concentration of the driving force at
the center of the transition region(φ= 0.5) and helps stabilize the front in the presence of
a strong temperature gradient. (The multiplicative factor of 5 is a normalization introduced
such that, with0 andµk appearing explicitly in the phase-field equation, the standard
interface condition is obtained in the limitδ→ 0.) In the limit whereδ is finite, the interface
condition takes the form

Vn

µ
eff
k (θ)

= Tm − T − 0
[
gs(θ)+ d2gs(θ)

dθ2

]
κ, (53)

where

1

µ
eff
k (θ)

= gs(θ)

µk

[
1− A

δ

α

µkL

cp

]
(54)

andA= 0.7833. To carry out computations, it is useful to measure length and time in units of
W=√2δ andτ = 2δ2/µk0, respectively, and to define the dimensionless temperature field
u= (T − Tm)/(L/cp). In this case Eq. (52) can be written in the same form as in Ref. [20],
where only the dimensionless coupling constantλ= (5/4)(δ/0)(L/cp)= (5

√
2/8)(W/d0)

enters in the equation whered0=0/(L/cp) is the capillary length. Then, the term inside
the square brackets on the RHS of Eq. (54) becomes equal to 1− (4A/5)(λW2/ατ). In the
present computations, we chooseD=ατ/W2= 4 and choose accordinglyλ= 5/A= 6.383,
which makes 1/µeff

k (θ) vanish in Eq. (54), and yields the ratiod0/W= 0.139. The other
relevant parameters areε4= 0.05 (5% anisotropy), and the Prandtl number,Pr= 23.1. In
the simulations presented here the initial and inlet melt temperature isuin= −0.55. Results
are shown for inlet velocitiesVin= 0 and 1, in units ofW/τ .

The flow equations (9) and (10) are solved using the SIMPLER algorithm [35], while
the phase-field equation and energy equation (12) are solved using an explicit method [38].
The species equation, Eq. (33), is not solved because we are simulating a pure substance.
The time step is 0.008 in units ofτ . Due to symmetry, only half of the domain (x> 0) is
discretized using a square grid of 288× 576 control volumes (unless otherwise noted). The
spatial step is 0.4 in both thex andy directions in units of W. It is shown below that the
present time and spatial steps lead to converged tip velocities and tip radii.

For diffusion controlled growth(Vin= 0), the present simulation recovers the results
of Karma and Rappel [14]. As an example, Fig. 12 shows the phase-field contours and
isotherms at three times corresponding tot = 15, 66, and 96 in units ofτ . The dendrite
grows symmetrically with the same dimensionless speed, equal toVtip= 0.502 in units of
W/τ , for all four tips. Rescaling the above tip velocity with(ατ/W2)/(d0/W), it can be
seen that the present value (0.01744) agrees well with the numerical solution (0.0174) and
the Green’s function analytical solution (0.017) reported in Refs. [14, 38]. More detailed
comparisons and grid and convergence studies for diffusion controlled growth at other
supercoolings and anisotropy strengths (using the same computer code for the phase-field
equation) can be found in Refs. [14, 20, 38, 43]. We also performed a grid anisotropy test
by rotating the principal growth direction of the dendrite by 45 degrees with respect to the
grid. For the example corresponding to Fig. 12, the steady state tip velocity at 45 degrees
was found to be 4.7% lower than the exact analytical value (0.017). A thorough analysis
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FIG. 12. Computed phase-field contours (top panels) and isotherms (bottom panels) from the dendritic growth
simulation without convection att = 15, 66, and 96 in units ofτ (from left to right).

of the grid anisotropy effect in phase-field simulations of dendritic growth has recently
been reported by one of the present authors [20]. According to that analysis, the present
grid introduces an effective anisotropy that is only about 1% of the nominal interfacial
anisotropy strength of 0.05.

Figure 13 shows the phase-field contours, velocity vectors, and isotherms for the simu-
lation with convection(Vin= 1) at the same three times as Fig. 12. For better visualization,
we have interpolated the velocities onto a grid that is almost 30 times coarser than the
one used in the computations. The temperature field is significantly distorted and indicates
much higher temperature gradients near the upper tip, where the flow impinges, than near
the lower tip, in the wake of the dendrite. In fact, the isotherms and velocity vectors are not
unlike the ones for low Reynolds number convection around an infinite cylinder. Conse-
quently, the dendrite acquires a highly asymmetric shape, with the upper tip growing faster
than the lower one. Another interesting observation is that the horizontal dendrite arms are
no longer symmetric about the initial dendrite axis and appear to grow slightly upwards.
This dendrite “tilting” is obviously not due to deformation of the solid (since it is assumed
rigid), but due to the heat fluxes being higher on the upstream side than on the downstream
side.

The evolution of all dendrite tip velocities, for two different grid resolutions, is plotted
in Fig. 14a and compared to the pure diffusion case. The upper tip and the two horizontally
growing tips experience a minimum in the velocity before approaching a steady value. The
initial decrease and the minimum are caused by the melt temperature being initially uniform
atuin=−0.55. On the other hand, the lower tip does not approach a steady growth regime,
which can be attributed to the fact that the convective flow in the wake region near the
lower tip continues to weaken due to the ever increasing size of dendrite. It can be seen that
the orientation of the dendrite tip with respect to the flow has a very strong effect on the
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FIG. 13. Computed phase-field contours and velocity vectors (top panels) and isotherms (bottom panels) from
the dendritic growth simulation with convection att = 15, 66, and 96 in units ofτ (from left to right).

steady tip velocities. The upper tip, where the flow impinges, grows about 40% faster than
in the pure diffusion case, while the lower tip can be more than 30% slower. The horizontal
tips, where the flow is normal to the growth direction, grow at approximately the same rate
as in the diffusion case. These results are in qualitative agreement with the experimental
data of Glicksman and Huang [41]. Although the present computational parameters do not
correspond to the supercoolings investigated by Glicksman and Huang, and the flow in their
experiments was induced by buoyancy, it can be estimated that the ratio of the flow velocity
to the tip growth velocity for their measurements with1T = 0.515 K was of the same
order of magnitude as in the present simulation [i.e., O(1)]. Based on Fig. 27 in Ref. [2],
convection in the1T = 0.515 K experiments resulted in a roughly 40% enhancement in
the velocity of the tip when the flow is opposite to the growth direction, and a reduction of
around 60% for the tip growing parallel to the flow. Although this comparison is certainly
not intended to be of a quantitative nature, and the actual percentages depend strongly on
the flow velocity, it shows that the present computations give correct trends.

The results of some basic numerical tests of the present method for dendritic growth with
convection are shown in Table II. In that table, computed steady state velocities (as well as
tip radii; see below) of the upper tip that grows in a direction opposite to the flow are shown
for varying grid resolution and diffuse interface thickness. It should be emphasized that the
dendrite tip velocity is a good quantity to use in such tests, because it is easily measured
from the computed results and, at the same time, highly sensitive to the tip operating state
selection by the surface energy anisotropy. It can be seen that increasing the number of
control volumes from 160× 320 to 288× 576 results in a roughly 10% decrease in the
tip velocity. Doubling the resolution again from 288× 576 to 576× 1152 changes the tip
velocity by only 1.6%, indicating that converged results are obtained with the 288× 576
grid. A comparison of the evolution of all tip velocities for the two finer grids is shown in
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FIG. 14. Evolution of the tip velocities (a) and tip radii (b) measured from the results of the dendritic growth
simulation.

Fig. 14a, and again consistent results are obtained. The diffuse interface thickness can be
most easily varied by changing the diffusivityD; obviously for the phase-field method to be
converged, the computed results should be independent ofD and the interface thickness. In
order to maintain the same number of control volumes over the thickness of the interface,
the grid spacing must be adjusted accordingly. Table II shows that the upper tip velocities
agree to within better than 2% for all three interface thicknesses tested. Although more
detailed tests than shown in Table II should be conducted in the future, our results indicate
that the present method with flow performs similar to phase-field methods without flow
[14, 20, 38, 42]. Also noted in Table II are the CPU times used in the computations. These
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TABLE II

Results of Grid Resolution and Diffuse Interface Thickness Tests for Phase-Field

Simulations of Dendritic Growth with Convection

D d0/W Nx Ny V d0/D ρ/d0 TCPU [h]

4 0.139 160 320 0.0265 8.10 3
4 0.139 288 576 0.0240 7.51 8
4 0.139 576 1152 0.0244 7.46 31
3 0.185 320 640 0.0248 7.48 17
2 0.277 512 1024 0.0247 7.61 70

Note. Shown are the velocity,V , and radius,ρ, of the upper tip that grows in a direction opposite
to the flow. In all tests the following parameters were held constant:1= 0.55,ε= 0.05,Pr= 23.1,
Pe∞ =Ud0/D= 0.035, W= 1, τ = 1, 1x/W= 0.4. TCPU denotes the CPU time in hours on a
HP-C200 workstation;Nx and Ny are the number of control volumes in thex and y directions,
respectively.

times should only be viewed as relative times as no effort was made to optimize the code.
An almost linear relationship between the total number of control volumes and the CPU
time can be noted. The CPU time increases with decreasing interface thickness, because
smaller time steps must be used. The vast majority of the CPU time requirement is due to
the flow solver, and more efficient numerical techniques can be used.

We have also measured the dendrite tip radii from the present simulation using a similar
method as in Ref. [42]. The evolution of the radiiρtip is plotted in Fig. 14b. For all tips,
the steady tip radii are only slightly above the pure diffusion value. For the upper tip, this
can be attributed to two competing effects: the increased tip velocity due to flow would
generally cause the tip radius to decrease because of stability considerations; however, the
impinging flow also tends to make the heat fluxes along the interface more uniform, resulting
in a tip shape that is more blunt. For the horizontal tip, the effect of the flow is minimal
because the flow is normal to the growth direction. Despite the fact that the lower tip grows
more slowly, the tip radius is about the same as in the diffusion case indicating that the
flow in wake of the dendrite causes a more even distribution of the heat fluxes along the
interface.

The knowledge of the tip radius and tip speed allows for the calculation of the tip Peclet
number, defined as

Pe= Vtipρtip

2α
. (55)

For diffusion-controlled growth, the Peclet number is related to the dimensionless super-
cooling1 at infinity by the two-dimensional Ivantsov relation [39]

1 = √πPeexp(Pe) erfc(
√

Pe). (56)

For a supercooling of 0.55(= −uin), the Peclet number from the above equation is equal
to PeIVAN= 0.257, while the Peclet number from the simulation withVin= 0 is PeSIM=
0.060. The difference is in good agreement with the finding of Wheeleret al. [39] and Karma
and Rappel [14, 38] that the ratio ofPeSIM/PeIVAN decreases with increasing anisotropy. More
discussion of this issue can be found in Refs. [20, 42].
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Finally, we examine the tip selection criterion for convection influenced dendritic growth.
Usually, the selection criterion is written as

σ ? = [ρtip/d0)Pe]−1, (57)

whereσ ? is a stability or selection constant which varies with anisotropy strength (but is
independent of supercooling) according to microscopic solvability theory [43, 44]. Based on
the steady values of the tip radii and velocities in Figs. 14a and 14b, we find thatσ?= 1.48
for the upper tip andσ ?= 2.42 for the horizontal tips. For the lower tip, we estimate that
σ ?= 3.4 by averaging the tip velocity and radius fromt = 80 to 100. For the pure diffusion
case, we find thatσ?= 2.51, which is in agreement with previous simulations and the
Green’s function analytical solution [14, 38]. The convection value ofσ? for the upper tip
is significantly below the diffusion value. This finding may be compared to the solvability
calculation of Bouissou and Pelc´e [45] that predicts a variation ofσ ? with the flow velocity.
We are presently exploring this issue in more detail. The fact that the convection value
of σ ? for the horizontal tips is quite close to the diffusion value is in agreement with the
experiments of Bouissouet al. [46], who found thatσ? does not depend on the transverse
component of the flow. The estimatedσ ? for the lower tip is much higher than the diffusion
value, indicating different growth mechanisms in the wake region. Obviously, this issue
needs further investigation as well.

9. CONCLUSIONS

A diffuse interface or phase-field model is presented for the direct numerical simulation
of microstructure evolution in solidification processes involving convection in the liquid
phase. The mass, momentum, energy, and species conservation equations for the diffuse in-
terface region are derived using volume averaging. An evolution equation for the phase field
is obtained through a simplified geometrical derivation starting from the classical velocity-
dependent Gibbs–Thomson equation for a sharp solid–liquid interface. The equations of the
model are not derivable from a single Lyapovnov functional, but our computations demon-
strate that this is not a limiting factor. In the limit of a thin interface, this model does indeed
reduce to the classical equations and boundary conditions that one would write down for a
macroscopically sharp interface, which makes this model computationally useful indepen-
dently of the way in which it is derived. The phase-field equation, as well as the conservation
equations, completely avoid the explicit tracking of the interface, the explicit satisfaction of
interfacial conditions, and the calculation of interface normals and curvatures. Furthermore,
it is possible to perform calculations in the limit of vanishing interface kinetic effects.

In accordance with the averaging method, the drag between the solid and liquid phases
is modeled as a distributed momentum sink term in the diffuse interface region and is taken
to be linearly proportional to the relative velocity of the phases. The interfacial drag model
is calibrated for plane flow past a stationary solid–liquid interface and is shown to pro-
duce accurate results regardless of the diffuse interface thickness. The model is thoroughly
tested against analytical results for two-dimensional Stokes flow through regular arrays of
cylinders. These results indicate excellent convergence properties for large diffuse interface
thickness to flow passage width ratios.

Two examples of application of the model to solidification/melting processes with melt
convection are presented. The first example involves convection and coarsening in an isother-
mal mush of a binary alloy. Although the interface thickness is chosen to be unrealistically
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large, the expected coarsening asymptotics are predicted. Results are presented for the evo-
lution of the permeability of the mush due to coarsening. The second example represents the
first fully resolved calculations of free dendritic growth of a pure substance in the presence
of melt flow. The dendrite tip velocities, radii, and selection criterion in the presence of
flow are examined in some detail. Additional simulations are needed to fully understand
and characterize the system behavior in both of the above applications.
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